File size: 8,334 Bytes
4d6f2bc
48c31e7
4d6f2bc
61ad3d2
4d6f2bc
 
 
61ad3d2
4d6f2bc
60849d7
4d6f2bc
 
48c31e7
61ad3d2
48c31e7
4d6f2bc
05246f1
 
60849d7
1128e78
4d6f2bc
dffd0bb
 
4d6f2bc
 
 
 
 
 
1128e78
05246f1
61ad3d2
4d6f2bc
 
05246f1
 
 
 
 
 
 
 
b7fd57e
 
 
22a0476
b7fd57e
 
 
 
 
 
 
c348e53
 
 
 
 
 
 
 
 
 
 
61ad3d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7fd57e
 
 
 
 
 
48c31e7
b7fd57e
 
48c31e7
eb8fc69
22a0476
b7fd57e
 
 
22a0476
 
 
 
eb8fc69
b7fd57e
 
22a0476
 
b7fd57e
48c31e7
60849d7
 
 
 
 
 
 
 
 
61ad3d2
60849d7
c348e53
 
60849d7
61ad3d2
c348e53
 
 
 
 
60849d7
c348e53
 
60849d7
c348e53
4d6f2bc
 
1128e78
61ad3d2
4d6f2bc
 
61ad3d2
4d6f2bc
 
 
 
 
 
 
48c31e7
 
 
4d6f2bc
 
61ad3d2
 
 
 
 
 
 
4d6f2bc
22a0476
60849d7
22a0476
 
 
 
 
 
 
 
1128e78
48c31e7
4d6f2bc
48c31e7
22a0476
4d6f2bc
 
60849d7
 
4d6f2bc
60849d7
 
 
 
 
 
 
22a0476
60849d7
 
 
 
 
 
 
 
 
 
 
 
61ad3d2
 
c348e53
60849d7
c348e53
22a0476
05246f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
from DeepCache import DeepCacheSDHelper
from diffusers import (
    DDIMScheduler,
    DEISMultistepScheduler,
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionImg2ImgPipeline,
    StableDiffusionPipeline,
)
from diffusers.models import AutoencoderKL, AutoencoderTiny
from diffusers.models.attention_processor import AttnProcessor2_0, IPAdapterAttnProcessor2_0
from torch._dynamo import OptimizedModule

from .upscaler import RealESRGAN

__import__("warnings").filterwarnings("ignore", category=FutureWarning, module="diffusers")


# inspired by ComfyUI
# https://github.com/comfyanonymous/ComfyUI/blob/master/comfy/model_management.py
class Loader:
    _instance = None

    def __new__(cls):
        if cls._instance is None:
            cls._instance = super(Loader, cls).__new__(cls)
            cls._instance.pipe = None
            cls._instance.upscaler = None
            cls._instance.ip_adapter = None
        return cls._instance

    def _load_upscaler(self, device=None, scale=4):
        same_scale = self.upscaler is not None and self.upscaler.scale == scale
        if scale == 1:
            self.upscaler = None
        if scale > 1 and not same_scale:
            self.upscaler = RealESRGAN(device=device, scale=scale)
            self.upscaler.load_weights()

    def _load_deepcache(self, interval=1):
        has_deepcache = hasattr(self.pipe, "deepcache")
        if has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval:
            return
        if has_deepcache:
            self.pipe.deepcache.disable()
        else:
            self.pipe.deepcache = DeepCacheSDHelper(pipe=self.pipe)
        self.pipe.deepcache.set_params(cache_interval=interval)
        self.pipe.deepcache.enable()

    def _load_freeu(self, freeu=False):
        # https://github.com/huggingface/diffusers/blob/v0.30.0/src/diffusers/models/unets/unet_2d_condition.py
        block = self.pipe.unet.up_blocks[0]
        attrs = ["b1", "b2", "s1", "s2"]
        has_freeu = all(getattr(block, attr, None) is not None for attr in attrs)
        if has_freeu and not freeu:
            self.pipe.disable_freeu()
        elif not has_freeu and freeu:
            # https://github.com/ChenyangSi/FreeU
            self.pipe.enable_freeu(b1=1.5, b2=1.6, s1=0.9, s2=0.2)

    def _load_ip_adapter(self, ip_adapter=None):
        if self.ip_adapter is None and self.ip_adapter != ip_adapter:
            self.pipe.load_ip_adapter(
                "h94/IP-Adapter",
                subfolder="models",
                weight_name=f"ip-adapter-{ip_adapter}_sd15.safetensors",
            )
            self.pipe.set_ip_adapter_scale(0.6 if ip_adapter == "full-face" else 0.5)
            self.ip_adapter = ip_adapter

        if self.ip_adapter is not None and ip_adapter is None:
            if not isinstance(self.pipe, StableDiffusionImg2ImgPipeline):
                self.pipe.image_encoder = None
                self.pipe.register_to_config(image_encoder=[None, None])

            self.pipe.feature_extractor = None
            self.pipe.unet.encoder_hid_proj = None
            self.pipe.unet.config.encoder_hid_dim_type = None
            self.pipe.register_to_config(feature_extractor=[None, None])

            attn_procs = {}
            for name, value in self.pipe.unet.attn_processors.items():
                attn_processor_class = AttnProcessor2_0()  # raises if not torch 2
                attn_procs[name] = (
                    attn_processor_class
                    if isinstance(value, IPAdapterAttnProcessor2_0)
                    else value.__class__()
                )
            self.pipe.unet.set_attn_processor(attn_procs)
            self.pipe.ip_adapter = None

    def _load_vae(self, taesd=False, model_name=None, variant=None):
        vae_type = type(self.pipe.vae)
        is_kl = issubclass(vae_type, (AutoencoderKL, OptimizedModule))
        is_tiny = issubclass(vae_type, AutoencoderTiny)

        # by default all models use KL
        if is_kl and taesd:
            # can't compile tiny VAE
            print("Switching to Tiny VAE...")
            self.pipe.vae = AutoencoderTiny.from_pretrained(
                pretrained_model_name_or_path="madebyollin/taesd",
            ).to(self.pipe.device, self.pipe.dtype)
            return

        if is_tiny and not taesd:
            print("Switching to KL VAE...")
            model = AutoencoderKL.from_pretrained(
                pretrained_model_name_or_path=model_name,
                subfolder="vae",
                variant=variant,
            ).to(self.pipe.device, self.pipe.dtype)
            self.pipe.vae = torch.compile(
                mode="reduce-overhead",
                fullgraph=True,
                model=model,
            )

    def _load_pipeline(self, kind, model, device, dtype, **kwargs):
        pipelines = {
            "txt2img": StableDiffusionPipeline,
            "img2img": StableDiffusionImg2ImgPipeline,
        }
        if self.pipe is None:
            self.pipe = pipelines[kind].from_pretrained(model, **kwargs).to(device, dtype)
        if not isinstance(self.pipe, pipelines[kind]):
            self.pipe = pipelines[kind].from_pipe(self.pipe).to(device, dtype)
            self.ip_adapter = None

    def load(
        self,
        kind,
        ip_adapter,
        model,
        scheduler,
        karras,
        taesd,
        freeu,
        deepcache,
        scale,
        device,
        dtype,
    ):
        model_lower = model.lower()

        schedulers = {
            "DDIM": DDIMScheduler,
            "DEIS 2M": DEISMultistepScheduler,
            "DPM++ 2M": DPMSolverMultistepScheduler,
            "Euler": EulerDiscreteScheduler,
            "Euler a": EulerAncestralDiscreteScheduler,
            "PNDM": PNDMScheduler,
        }

        scheduler_kwargs = {
            "beta_schedule": "scaled_linear",
            "timestep_spacing": "leading",
            "beta_start": 0.00085,
            "beta_end": 0.012,
            "steps_offset": 1,
        }

        if scheduler not in ["DDIM", "Euler a", "PNDM"]:
            scheduler_kwargs["use_karras_sigmas"] = karras

        # https://github.com/huggingface/diffusers/blob/8a3f0c1/scripts/convert_original_stable_diffusion_to_diffusers.py#L939
        if scheduler == "DDIM":
            scheduler_kwargs["clip_sample"] = False
            scheduler_kwargs["set_alpha_to_one"] = False

        # no fp16 variant
        if model_lower not in [
            "sg161222/realistic_vision_v5.1_novae",
            "prompthero/openjourney-v4",
            "linaqruf/anything-v3-1",
        ]:
            variant = "fp16"
        else:
            variant = None

        pipe_kwargs = {
            "scheduler": schedulers[scheduler](**scheduler_kwargs),
            "requires_safety_checker": False,
            "safety_checker": None,
            "variant": variant,
        }

        if self.pipe is None:
            print(f"Loading {model_lower} with {'Tiny' if taesd else 'KL'} VAE...")

        self._load_pipeline(kind, model_lower, device, dtype, **pipe_kwargs)
        model_name = self.pipe.config._name_or_path
        same_model = model_name.lower() == model_lower
        same_scheduler = isinstance(self.pipe.scheduler, schedulers[scheduler])
        same_karras = (
            not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
            or self.pipe.scheduler.config.use_karras_sigmas == karras
        )

        if same_model:
            if not same_scheduler:
                print(f"Switching to {scheduler}...")
            if not same_karras:
                print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
            if not same_scheduler or not same_karras:
                self.pipe.scheduler = schedulers[scheduler](**scheduler_kwargs)
        else:
            self.pipe = None
            self._load_pipeline(kind, model_lower, device, dtype, **pipe_kwargs)

        self._load_ip_adapter(ip_adapter)
        self._load_vae(taesd, model_lower, variant)
        self._load_freeu(freeu)
        self._load_deepcache(deepcache)
        self._load_upscaler(device, scale)
        torch.cuda.empty_cache()
        return self.pipe, self.upscaler