File size: 7,091 Bytes
c9f26e8
 
ff4e3da
 
c9f26e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff4e3da
c9f26e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55b549b
c9f26e8
 
ff4e3da
c9f26e8
 
 
 
 
 
 
55b549b
c9f26e8
 
 
 
ff4e3da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9f26e8
 
 
 
 
 
 
 
 
 
 
 
 
 
ff4e3da
 
 
c9f26e8
 
2591f90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e71f7f1
2591f90
 
 
 
 
c9f26e8
 
2591f90
 
e71f7f1
2591f90
 
 
ff4e3da
2591f90
ff4e3da
 
 
 
2591f90
ff4e3da
 
 
 
 
 
 
 
c9f26e8
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import argparse
import gradio as gr
from difflib import Differ
from functools import partial
from string import Template
from utils import load_prompt, setup_gemini_client

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--ai-studio-api-key", type=str, default=os.getenv("GEMINI_API_KEY"))
    parser.add_argument("--vertexai", action="store_true", default=False)
    parser.add_argument("--vertexai-project", type=str, default="gcp-ml-172005")
    parser.add_argument("--vertexai-location", type=str, default="us-central1")
    parser.add_argument("--model", type=str, default="gemini-1.5-flash")

    parser.add_argument("--prompt-tmpl-path", type=str, default="configs/prompts.toml")
    parser.add_argument("--css-path", type=str, default="statics/styles.css")
    args = parser.parse_args()
    return args

def find_attached_file(filename, attached_files):
    for file in attached_files:
        if file['name'] == filename:
            return file
    return None

def echo(message, history, state):

    attached_file = None
    if message['files']:
        path_local = message['files'][0]
        filename = os.path.basename(path_local)

        attached_file = find_attached_file(filename, state["attached_files"])
        if attached_file is None: 
            path_gcp = client.files.upload(path=path_local)
            state["attached_files"].append({
                "name": filename,
                "path_local": path_local,
                "gcp_entity": path_gcp,
                "path_gcp": path_gcp.name,
                "mime_type=": path_gcp.mime_type,
                "expiration_time": path_gcp.expiration_time,
            })
            attached_file = path_gcp

    # [{'role': 'user', 'metadata': None, 'content': 'asdf', 'options': None}, {'role': 'assistant', 'metadata': None, 'content': 'asdf', 'options': None}]

    user_message = [message['text']]
    if attached_file: user_message.append(attached_file)

    chat_history = state['messages']
    chat_history = chat_history + user_message
    state['messages'] = chat_history

    response = client.models.generate_content(
        model="gemini-1.5-flash",
        contents=state['messages']
    )
    model_response = response.text

    # make summary
    if state['summary'] != "":
        response = client.models.generate_content(
            model="gemini-1.5-flash",
            contents=[
                Template(
                    prompt_tmpl['summarization']['prompt']
                ).safe_substitute(
                    previous_summary=state['summary'], 
                    latest_conversation=str({"user": message['text'], "assistant": model_response})
                )
            ]
        )

    if state['summary'] != "":
        prev_summary = state['summary_history'][-1]
    else:
        prev_summary = ""

    d = Differ()
    state['summary'] = response.text
    state['summary_history'].append(response.text)
    state['summary_diff_history'].append(
        [
            (token[2:], token[0] if token[0] != " " else None)
            for token in d.compare(prev_summary, state['summary'])
        ]
    )

    return (
        model_response, 
        state, 
        # state['summary'],
        state['summary_diff_history'][-1],
        state['summary_history'][-1],
        gr.Slider(
            maximum=len(state['summary_history']),
            value=len(state['summary_history']),
            visible=False if len(state['summary_history']) == 1 else True, interactive=True
        ),
    )

def change_view_toggle(view_toggle):
    if view_toggle == "Diff":
        return (
            gr.HighlightedText(visible=True),
            gr.Markdown(visible=False)
        )
    else:
        return (
            gr.HighlightedText(visible=False),
            gr.Markdown(visible=True)
        )        

def navigate_to_summary(summary_num, state):
    return (
        state['summary_diff_history'][summary_num-1],
        state['summary_history'][summary_num-1]
    )

def main(args):
    style_css = open(args.css_path, "r").read()

    global client, prompt_tmpl
    client = setup_gemini_client(args)
    prompt_tmpl = load_prompt(args)
    
    ## Gradio Blocks
    with gr.Blocks(css=style_css) as demo:
        # State per session
        state = gr.State({
            "messages": [],
            "attached_files": [],
            "summary": "",
            "summary_history": [],
            "summary_diff_history": []
        })

        with gr.Column():
            gr.Markdown("# Adaptive Summarization")
            gr.Markdown("AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.")

        with gr.Column():
            with gr.Accordion("Adaptively Summarized Conversation", elem_id="adaptive-summary-accordion", open=False):
                with gr.Row(elem_id="view-toggle-btn-container"):
                    view_toggle_btn = gr.Radio(
                        choices=["Diff", "Markdown"],
                        value="Markdown",
                        interactive=True,
                        elem_id="view-toggle-btn"
                    )

                summary_diff = gr.HighlightedText(
                    label="Summary so far",
                    # value="No summary yet. As you chat with the assistant, the summary will be updated automatically.",
                    combine_adjacent=True,
                    show_legend=True,
                    color_map={"+": "red", "-": "green"},
                    elem_classes=["summary-window"],
                    visible=False
                )

                summary_md = gr.Markdown(
                    label="Summary so far",
                    value="No summary yet. As you chat with the assistant, the summary will be updated automatically.",
                    elem_classes=["summary-window"],
                    visible=True
                )

                summary_num = gr.Slider(label="summary history", minimum=1, maximum=1, step=1, show_reset_button=False, visible=False)

            view_toggle_btn.change(change_view_toggle, inputs=[view_toggle_btn], outputs=[summary_diff, summary_md])
            summary_num.release(navigate_to_summary, inputs=[summary_num, state], outputs=[summary_diff, summary_md])
        
        with gr.Column("chat-window", elem_id="chat-window"):
            gr.ChatInterface(
                multimodal=True,
                type="messages", 
                fn=echo, 
                additional_inputs=[state],
                additional_outputs=[state, summary_diff, summary_md, summary_num],
            )

    return demo

if __name__ == "__main__":
    args = parse_args()
    demo = main(args)
    demo.launch()