File size: 12,212 Bytes
c9f26e8
 
4f5f090
ff4e3da
 
c9f26e8
 
cb90219
4f5f090
c9f26e8
02ee91b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a61f75
02ee91b
 
f345cad
7a61f75
 
f345cad
 
02ee91b
 
 
 
 
 
 
d170f2b
 
 
02ee91b
 
 
 
d170f2b
 
02ee91b
 
d170f2b
0be7331
02ee91b
7a61f75
 
 
0be7331
 
 
 
 
 
 
 
 
 
 
 
 
 
7a61f75
0be7331
 
 
3dbd665
0be7331
 
 
9a9cb60
0be7331
 
7a61f75
0be7331
 
 
3dbd665
0be7331
 
 
9a9cb60
0be7331
 
 
02ee91b
 
 
 
 
 
 
7b9a3c8
02ee91b
 
 
 
 
 
7b9a3c8
02ee91b
d170f2b
 
 
 
02ee91b
 
 
 
 
 
 
 
7a61f75
02ee91b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9a3c8
 
 
 
 
02ee91b
 
 
 
7b9a3c8
02ee91b
 
 
 
 
 
 
7b9a3c8
02ee91b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9a3c8
02ee91b
7b9a3c8
 
02ee91b
 
c9f26e8
02ee91b
c9f26e8
02ee91b
 
 
c9f26e8
 
02ee91b
c9f26e8
 
 
7b9a3c8
c9f26e8
ff4e3da
 
7b9a3c8
 
c9f26e8
 
2591f90
 
 
 
205e0e5
 
 
 
 
 
 
 
 
 
7b9a3c8
 
 
 
 
 
 
205e0e5
 
 
 
 
 
7b9a3c8
205e0e5
 
 
 
 
 
7b9a3c8
205e0e5
 
 
 
 
7b9a3c8
 
205e0e5
7b9a3c8
02ee91b
bfa89c4
 
 
 
 
 
7a61f75
 
 
 
 
 
 
02ee91b
2c62099
 
76ac263
40d3c00
 
7a61f75
7b9a3c8
2c62099
02ee91b
c9f26e8
 
 
02ee91b
 
2095477
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import os
import argparse
import asyncio
import gradio as gr
from difflib import Differ
from string import Template
from utils import load_prompt, setup_gemini_client
from configs.responses import SummaryResponses
from google.genai import types

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--ai-studio-api-key", type=str, default=os.getenv("GEMINI_API_KEY"))
    parser.add_argument("--vertexai", action="store_true", default=False)
    parser.add_argument("--vertexai-project", type=str, default="gcp-ml-172005")
    parser.add_argument("--vertexai-location", type=str, default="us-central1")
    parser.add_argument("--model", type=str, default="gemini-2.0-flash", choices=["gemini-1.5-flash", "gemini-2.0-flash", "gemini-2.0-flash-001"])
    parser.add_argument("--seed", type=int, default=2025)
    parser.add_argument("--prompt-tmpl-path", type=str, default="configs/prompts.toml")
    parser.add_argument("--css-path", type=str, default="statics/styles.css")
    args = parser.parse_args()
    return args

def find_attached_file(filename, attached_files):
    for file in attached_files:
        if file['name'] == filename:
            return file
    return None

async def echo(message, history, state, persona, use_generated_summaries):
    attached_file = None
    system_instruction = Template(prompt_tmpl['summarization']['system_prompt']).safe_substitute(persona=persona)
    system_instruction_cutoff = prompt_tmpl['summarization']['system_prompt_cutoff']
    use_generated_summaries = True if use_generated_summaries == "Yes" else False

    print(system_instruction_cutoff)
    
    if message['files']:
        path_local = message['files'][0]
        filename = os.path.basename(path_local)

        attached_file = find_attached_file(filename, state["attached_files"])
        if attached_file is None: 
            path_gcp = await client.files.upload(path=path_local)
            path_wrap = types.Part.from_uri(
                file_uri=path_gcp.uri, mime_type=path_gcp.mime_type
            )
            state["attached_files"].append({
                "name": filename,
                "path_local": path_local,
                "gcp_entity": path_gcp,
                "path_gcp": path_wrap,
                "mime_type": path_gcp.mime_type,
                "expiration_time": path_gcp.expiration_time,
            })
            attached_file = path_wrap
            
    response_chunks = ""
    model_contents = ""
    if use_generated_summaries:
        if "summary_history" in state and len(state["summary_history"]):
            user_message_parts = [
                types.Part.from_text(text=f"""Summary\n:{state["summary_history"][-1]}\n-------"""),
                types.Part.from_text(text=message['text'])
            ]
            if attached_file: user_message_parts.append(attached_file)
            model_contents = [types.Content(role='user', parts=user_message_parts)]

            model_content_stream = await client.models.generate_content_stream(
                model=args.model, 
                contents=model_contents, 
                config=types.GenerateContentConfig(
                    system_instruction=system_instruction_cutoff, seed=args.seed
                ),
            )                
        else:
            user_message_parts = [types.Part.from_text(text=message['text'])]
            if attached_file: user_message_parts.append(attached_file)
            user_message = [types.Content(role='user', parts=user_message_parts)]
            state['messages'] = state['messages'] + user_message

            model_content_stream = await client.models.generate_content_stream(
                model=args.model, 
                contents=state['messages'], 
                config=types.GenerateContentConfig(seed=args.seed),
            )    
    else:
        user_message_parts = [types.Part.from_text(text=message['text'])]
        if attached_file: user_message_parts.append(attached_file)
        user_message = [types.Content(role='user', parts=user_message_parts)]
        state['messages'] = state['messages'] + user_message

        model_content_stream = await client.models.generate_content_stream(
            model=args.model, 
            contents=state['messages'], 
            config=types.GenerateContentConfig(seed=args.seed),
        )    

    async for chunk in model_content_stream:
        response_chunks += chunk.text
        # when model generates too fast, Gradio does not respond that in real-time.
        await asyncio.sleep(0.1)
        yield (
            response_chunks, 
            state, 
            message['text'],
            state['summary_diff_history'][-1] if len(state['summary_diff_history']) > 1 else "",
            state['summary_history'][-1] if len(state['summary_history']) > 1 else "",
            gr.Slider(
                visible=False if len(state['summary_history']) <= 1 else True, 
                interactive=False if len(state['summary_history']) <= 1 else True, 
            ),
            gr.DownloadButton(visible=False)
        )        

    state['messages'] = state['messages'] + [
        types.Content(role='model', parts=[types.Part.from_text(text=response_chunks)])
    ]
    
    # make summary
    response = await client.models.generate_content(
        model=args.model,
        contents=[
            Template(
                prompt_tmpl['summarization']['prompt']
            ).safe_substitute(
                previous_summary=state['summary'],
                latest_conversation=str({"user": message['text'], "assistant": response_chunks})
            )
        ],
        config=types.GenerateContentConfig(
            system_instruction=system_instruction, 
            seed=args.seed,
            response_mime_type='application/json', 
            response_schema=SummaryResponses
        )
    )

    prev_summary = state['summary_history'][-1] if len(state['summary_history']) >= 1 else ""

    state['summary'] = (
        response.parsed.summary 
        if getattr(response.parsed, "summary", None) is not None 
        else response.text
    )
    state['summary_history'].append(
        response.parsed.summary 
        if getattr(response.parsed, "summary", None) is not None 
        else response.text
    )
    state['summary_diff_history'].append(
        [
            (token[2:], token[0] if token[0] != " " else None)
            for token in Differ().compare(prev_summary, state['summary'])
        ]
    )
    state['user_messages'].append(message['text'])

    state['filepaths'].append(f"{os.urandom(10).hex()}_summary_at_{len(state['summary_history'])}.md")
    with open(state['filepaths'][-1], 'w', encoding='utf-8') as f:
        f.write(state['summary'])

    yield (
        response_chunks, 
        state, 
        message['text'],
        state['summary_diff_history'][-1],
        state['summary_history'][-1],
        gr.Slider(
            maximum=len(state['summary_history']),
            value=len(state['summary_history']),
            visible=False if len(state['summary_history']) == 1 else True, interactive=True
        ),
        gr.DownloadButton(f"Download summary at index {len(state['summary_history'])}", value=state['filepaths'][-1], visible=True)
    )

def change_view_toggle(view_toggle):
    if view_toggle == "Diff":
        return (
            gr.HighlightedText(visible=True),
            gr.Markdown(visible=False)
        )
    else:
        return (
            gr.HighlightedText(visible=False),
            gr.Markdown(visible=True)
        )        

def navigate_to_summary(summary_num, state):
    return (
        state['user_messages'][summary_num-1],
        state['summary_diff_history'][summary_num-1],
        state['summary_history'][summary_num-1],
        gr.DownloadButton(f"Download summary at index {summary_num}", value=state['filepaths'][summary_num-1])
    )

def main(args):
    style_css = open(args.css_path, "r").read()

    global client, prompt_tmpl, system_instruction
    client = setup_gemini_client(args)
    prompt_tmpl = load_prompt(args)
    
    ## Gradio Blocks
    with gr.Blocks(css=style_css) as demo:
        # State per session
        state = gr.State({
            "messages": [],
            "user_messages": [],
            "attached_files": [],
            "summary": "",
            "summary_history": [],
            "summary_diff_history": [],
            "filepaths": []
        })

        with gr.Column():
            gr.Markdown("# Adaptive Summarization")
            gr.Markdown("AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.")

        with gr.Column():
            with gr.Accordion("Adaptively Summarized Conversation", elem_id="adaptive-summary-accordion", open=False):
                with gr.Row(elem_id="view-toggle-btn-container"):
                    view_toggle_btn = gr.Radio(
                        choices=["Diff", "Markdown"],
                        value="Markdown",
                        interactive=True,
                        elem_id="view-toggle-btn"
                    )

                last_user_msg = gr.Textbox(
                    label="Last User Message",
                    value="",
                    interactive=False,
                    elem_classes=["last-user-msg"]
                )

                summary_diff = gr.HighlightedText(
                    label="Summary so far",
                    # value="No summary yet. As you chat with the assistant, the summary will be updated automatically.",
                    combine_adjacent=True,
                    show_legend=True,
                    color_map={"-": "red", "+": "green"},
                    elem_classes=["summary-window-highlighted"],
                    visible=False
                )

                summary_md = gr.Markdown(
                    label="Summary so far",
                    value="No summary yet. As you chat with the assistant, the summary will be updated automatically.",
                    elem_classes=["summary-window-markdown"],
                    visible=True
                )

                summary_num = gr.Slider(label="summary history", minimum=1, maximum=1, step=1, show_reset_button=False, visible=False)

                download_summary_md = gr.DownloadButton("Download summary", visible=False)

            view_toggle_btn.change(change_view_toggle, inputs=[view_toggle_btn], outputs=[summary_diff, summary_md])
            summary_num.release(navigate_to_summary, inputs=[summary_num, state], outputs=[last_user_msg, summary_diff, summary_md, download_summary_md])
        
        with gr.Column("persona-dropdown-container", elem_id="persona-dropdown-container"):
            persona = gr.Dropdown(
                ["expert", "novice", "regular practitioner", "high schooler"], 
                label="Summary Persona", 
                info="Control the tonality of the conversation.",
                min_width="auto",
            )      
            use_generated_summaries = gr.Dropdown(
                ["No", "Yes"], 
                label="Feed back the generated summaries", 
                info="Set this to 'Yes' to ONLY feed the generated summaries back to the model instead of the whole conversation.",
                min_width="auto",
            )      

        with gr.Column("chat-window", elem_id="chat-window"):
            gr.ChatInterface(
                multimodal=True,
                type="messages", 
                fn=echo, 
                additional_inputs=[state, persona, use_generated_summaries],
                additional_outputs=[state, last_user_msg, summary_diff, summary_md, summary_num, download_summary_md],
            )

    return demo

if __name__ == "__main__":
    args = parse_args()
    demo = main(args)
    demo.launch()