File size: 12,212 Bytes
c9f26e8 4f5f090 ff4e3da c9f26e8 cb90219 4f5f090 c9f26e8 02ee91b 7a61f75 02ee91b f345cad 7a61f75 f345cad 02ee91b d170f2b 02ee91b d170f2b 02ee91b d170f2b 0be7331 02ee91b 7a61f75 0be7331 7a61f75 0be7331 3dbd665 0be7331 9a9cb60 0be7331 7a61f75 0be7331 3dbd665 0be7331 9a9cb60 0be7331 02ee91b 7b9a3c8 02ee91b 7b9a3c8 02ee91b d170f2b 02ee91b 7a61f75 02ee91b 7b9a3c8 02ee91b 7b9a3c8 02ee91b 7b9a3c8 02ee91b 7b9a3c8 02ee91b 7b9a3c8 02ee91b c9f26e8 02ee91b c9f26e8 02ee91b c9f26e8 02ee91b c9f26e8 7b9a3c8 c9f26e8 ff4e3da 7b9a3c8 c9f26e8 2591f90 205e0e5 7b9a3c8 205e0e5 7b9a3c8 205e0e5 7b9a3c8 205e0e5 7b9a3c8 205e0e5 7b9a3c8 02ee91b bfa89c4 7a61f75 02ee91b 2c62099 76ac263 40d3c00 7a61f75 7b9a3c8 2c62099 02ee91b c9f26e8 02ee91b 2095477 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import os
import argparse
import asyncio
import gradio as gr
from difflib import Differ
from string import Template
from utils import load_prompt, setup_gemini_client
from configs.responses import SummaryResponses
from google.genai import types
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--ai-studio-api-key", type=str, default=os.getenv("GEMINI_API_KEY"))
parser.add_argument("--vertexai", action="store_true", default=False)
parser.add_argument("--vertexai-project", type=str, default="gcp-ml-172005")
parser.add_argument("--vertexai-location", type=str, default="us-central1")
parser.add_argument("--model", type=str, default="gemini-2.0-flash", choices=["gemini-1.5-flash", "gemini-2.0-flash", "gemini-2.0-flash-001"])
parser.add_argument("--seed", type=int, default=2025)
parser.add_argument("--prompt-tmpl-path", type=str, default="configs/prompts.toml")
parser.add_argument("--css-path", type=str, default="statics/styles.css")
args = parser.parse_args()
return args
def find_attached_file(filename, attached_files):
for file in attached_files:
if file['name'] == filename:
return file
return None
async def echo(message, history, state, persona, use_generated_summaries):
attached_file = None
system_instruction = Template(prompt_tmpl['summarization']['system_prompt']).safe_substitute(persona=persona)
system_instruction_cutoff = prompt_tmpl['summarization']['system_prompt_cutoff']
use_generated_summaries = True if use_generated_summaries == "Yes" else False
print(system_instruction_cutoff)
if message['files']:
path_local = message['files'][0]
filename = os.path.basename(path_local)
attached_file = find_attached_file(filename, state["attached_files"])
if attached_file is None:
path_gcp = await client.files.upload(path=path_local)
path_wrap = types.Part.from_uri(
file_uri=path_gcp.uri, mime_type=path_gcp.mime_type
)
state["attached_files"].append({
"name": filename,
"path_local": path_local,
"gcp_entity": path_gcp,
"path_gcp": path_wrap,
"mime_type": path_gcp.mime_type,
"expiration_time": path_gcp.expiration_time,
})
attached_file = path_wrap
response_chunks = ""
model_contents = ""
if use_generated_summaries:
if "summary_history" in state and len(state["summary_history"]):
user_message_parts = [
types.Part.from_text(text=f"""Summary\n:{state["summary_history"][-1]}\n-------"""),
types.Part.from_text(text=message['text'])
]
if attached_file: user_message_parts.append(attached_file)
model_contents = [types.Content(role='user', parts=user_message_parts)]
model_content_stream = await client.models.generate_content_stream(
model=args.model,
contents=model_contents,
config=types.GenerateContentConfig(
system_instruction=system_instruction_cutoff, seed=args.seed
),
)
else:
user_message_parts = [types.Part.from_text(text=message['text'])]
if attached_file: user_message_parts.append(attached_file)
user_message = [types.Content(role='user', parts=user_message_parts)]
state['messages'] = state['messages'] + user_message
model_content_stream = await client.models.generate_content_stream(
model=args.model,
contents=state['messages'],
config=types.GenerateContentConfig(seed=args.seed),
)
else:
user_message_parts = [types.Part.from_text(text=message['text'])]
if attached_file: user_message_parts.append(attached_file)
user_message = [types.Content(role='user', parts=user_message_parts)]
state['messages'] = state['messages'] + user_message
model_content_stream = await client.models.generate_content_stream(
model=args.model,
contents=state['messages'],
config=types.GenerateContentConfig(seed=args.seed),
)
async for chunk in model_content_stream:
response_chunks += chunk.text
# when model generates too fast, Gradio does not respond that in real-time.
await asyncio.sleep(0.1)
yield (
response_chunks,
state,
message['text'],
state['summary_diff_history'][-1] if len(state['summary_diff_history']) > 1 else "",
state['summary_history'][-1] if len(state['summary_history']) > 1 else "",
gr.Slider(
visible=False if len(state['summary_history']) <= 1 else True,
interactive=False if len(state['summary_history']) <= 1 else True,
),
gr.DownloadButton(visible=False)
)
state['messages'] = state['messages'] + [
types.Content(role='model', parts=[types.Part.from_text(text=response_chunks)])
]
# make summary
response = await client.models.generate_content(
model=args.model,
contents=[
Template(
prompt_tmpl['summarization']['prompt']
).safe_substitute(
previous_summary=state['summary'],
latest_conversation=str({"user": message['text'], "assistant": response_chunks})
)
],
config=types.GenerateContentConfig(
system_instruction=system_instruction,
seed=args.seed,
response_mime_type='application/json',
response_schema=SummaryResponses
)
)
prev_summary = state['summary_history'][-1] if len(state['summary_history']) >= 1 else ""
state['summary'] = (
response.parsed.summary
if getattr(response.parsed, "summary", None) is not None
else response.text
)
state['summary_history'].append(
response.parsed.summary
if getattr(response.parsed, "summary", None) is not None
else response.text
)
state['summary_diff_history'].append(
[
(token[2:], token[0] if token[0] != " " else None)
for token in Differ().compare(prev_summary, state['summary'])
]
)
state['user_messages'].append(message['text'])
state['filepaths'].append(f"{os.urandom(10).hex()}_summary_at_{len(state['summary_history'])}.md")
with open(state['filepaths'][-1], 'w', encoding='utf-8') as f:
f.write(state['summary'])
yield (
response_chunks,
state,
message['text'],
state['summary_diff_history'][-1],
state['summary_history'][-1],
gr.Slider(
maximum=len(state['summary_history']),
value=len(state['summary_history']),
visible=False if len(state['summary_history']) == 1 else True, interactive=True
),
gr.DownloadButton(f"Download summary at index {len(state['summary_history'])}", value=state['filepaths'][-1], visible=True)
)
def change_view_toggle(view_toggle):
if view_toggle == "Diff":
return (
gr.HighlightedText(visible=True),
gr.Markdown(visible=False)
)
else:
return (
gr.HighlightedText(visible=False),
gr.Markdown(visible=True)
)
def navigate_to_summary(summary_num, state):
return (
state['user_messages'][summary_num-1],
state['summary_diff_history'][summary_num-1],
state['summary_history'][summary_num-1],
gr.DownloadButton(f"Download summary at index {summary_num}", value=state['filepaths'][summary_num-1])
)
def main(args):
style_css = open(args.css_path, "r").read()
global client, prompt_tmpl, system_instruction
client = setup_gemini_client(args)
prompt_tmpl = load_prompt(args)
## Gradio Blocks
with gr.Blocks(css=style_css) as demo:
# State per session
state = gr.State({
"messages": [],
"user_messages": [],
"attached_files": [],
"summary": "",
"summary_history": [],
"summary_diff_history": [],
"filepaths": []
})
with gr.Column():
gr.Markdown("# Adaptive Summarization")
gr.Markdown("AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.")
with gr.Column():
with gr.Accordion("Adaptively Summarized Conversation", elem_id="adaptive-summary-accordion", open=False):
with gr.Row(elem_id="view-toggle-btn-container"):
view_toggle_btn = gr.Radio(
choices=["Diff", "Markdown"],
value="Markdown",
interactive=True,
elem_id="view-toggle-btn"
)
last_user_msg = gr.Textbox(
label="Last User Message",
value="",
interactive=False,
elem_classes=["last-user-msg"]
)
summary_diff = gr.HighlightedText(
label="Summary so far",
# value="No summary yet. As you chat with the assistant, the summary will be updated automatically.",
combine_adjacent=True,
show_legend=True,
color_map={"-": "red", "+": "green"},
elem_classes=["summary-window-highlighted"],
visible=False
)
summary_md = gr.Markdown(
label="Summary so far",
value="No summary yet. As you chat with the assistant, the summary will be updated automatically.",
elem_classes=["summary-window-markdown"],
visible=True
)
summary_num = gr.Slider(label="summary history", minimum=1, maximum=1, step=1, show_reset_button=False, visible=False)
download_summary_md = gr.DownloadButton("Download summary", visible=False)
view_toggle_btn.change(change_view_toggle, inputs=[view_toggle_btn], outputs=[summary_diff, summary_md])
summary_num.release(navigate_to_summary, inputs=[summary_num, state], outputs=[last_user_msg, summary_diff, summary_md, download_summary_md])
with gr.Column("persona-dropdown-container", elem_id="persona-dropdown-container"):
persona = gr.Dropdown(
["expert", "novice", "regular practitioner", "high schooler"],
label="Summary Persona",
info="Control the tonality of the conversation.",
min_width="auto",
)
use_generated_summaries = gr.Dropdown(
["No", "Yes"],
label="Feed back the generated summaries",
info="Set this to 'Yes' to ONLY feed the generated summaries back to the model instead of the whole conversation.",
min_width="auto",
)
with gr.Column("chat-window", elem_id="chat-window"):
gr.ChatInterface(
multimodal=True,
type="messages",
fn=echo,
additional_inputs=[state, persona, use_generated_summaries],
additional_outputs=[state, last_user_msg, summary_diff, summary_md, summary_num, download_summary_md],
)
return demo
if __name__ == "__main__":
args = parse_args()
demo = main(args)
demo.launch()
|