File size: 8,043 Bytes
fccc18d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
// api.js
import { updateLastMessage } from './utils.js';
import { sessions, currentSessionIndex } from './sessions.js';
/**
* Chooses the correct API function based on the model setting.
*/
export async function callLLMStream(conversation, signal) {
const session = sessions[currentSessionIndex];
const { model, temperature, maxTokens } = session.settings;
if (model.startsWith("gpt-4o")) {
return callOpenAIStream(session, conversation, model, temperature, maxTokens, signal);
} else if (model.startsWith("claude")) {
return callAnthropicStream(session, conversation, model, temperature, maxTokens, signal);
} else if (model.startsWith("gemini")) {
return callGoogleStream(session, conversation, model, temperature, maxTokens, signal);
} else if (model.startsWith("huggingface")) {
return callHuggingFaceStream(session, conversation, model.replace("huggingface/", ""), temperature, maxTokens, signal);
} else if (model.startsWith("mistral")) {
return callMistralStream(session, conversation, model, temperature, maxTokens, signal);
} else {
throw new Error("Unsupported model: " + model);
}
}
/**
* Process streaming response from LLM APIs
*/
async function processStream(reader, decoder, session, errorPrefix = "Stream") {
let done = false;
let aiMessage = "";
let buffer = "";
updateLastMessage(session, aiMessage, true);
while (!done) {
const { value, done: doneReading } = await reader.read();
done = doneReading;
// Decode the chunk and append it to the buffer
buffer += decoder.decode(value, { stream: true });
// Process the buffer based on newline delimiters
const parts = buffer.split("\n\n");
// Keep the last part in buffer as it might be incomplete
buffer = parts.pop();
// Process complete parts
for (const part of parts) {
const trimmed = part.trim();
if (!trimmed.startsWith("data:")) continue;
const dataStr = trimmed.substring(5).trim(); // Remove "data:" prefix
if (dataStr === "[DONE]") {
done = true;
break;
}
try {
const parsed = JSON.parse(dataStr);
const delta = parsed.choices[0].delta.content;
if (delta) {
aiMessage += delta;
updateLastMessage(session, aiMessage, true);
}
} catch (err) {
console.error(`${errorPrefix} parsing error:`, err, "Chunk:", dataStr);
}
}
}
// Process any remaining buffered data
if (buffer.trim()) {
try {
const trimmed = buffer.trim();
if (trimmed.startsWith("data:")) {
const dataStr = trimmed.substring(5).trim();
if (dataStr !== "[DONE]") {
const parsed = JSON.parse(dataStr);
const delta = parsed.choices[0].delta.content;
if (delta) {
aiMessage += delta;
updateLastMessage(session, aiMessage, true);
}
}
}
} catch (err) {
console.error(`Final buffer parsing error:`, err, "Buffer:", buffer);
}
}
updateLastMessage(session, aiMessage, false);
return aiMessage;
}
/**
* Helper function to create API request options
*/
function createRequestOptions(session, payload, signal) {
return {
method: "POST",
headers: {
"Content-Type": "application/json",
"X-Session-ID": session.id,
},
body: JSON.stringify(payload),
signal: signal,
};
}
export async function callOpenAIStream(session, conversation, model, temperature, maxTokens, signal) {
const response = await fetch("http://127.0.0.1:8000/openai_stream",
createRequestOptions(session, {
conversation: conversation,
temperature: temperature,
max_tokens: maxTokens,
model: model,
}, signal)
);
const reader = response.body.getReader();
const decoder = new TextDecoder("utf-8");
return processStream(reader, decoder, session, "OpenAI stream");
}
export async function callAnthropicStream(session, conversation, model, temperature, maxTokens, signal) {
model = model.toLowerCase().replace(/\s+/g, '-').replace(/\./g, '-');
console.log(`Calling Anthropic API with model: ${model}`);
const response = await fetch("http://127.0.0.1:8000/anthropic_stream",
createRequestOptions(session, {
messages: conversation,
temperature: temperature,
max_tokens: maxTokens,
model: model + "-latest",
}, signal)
);
const reader = response.body.getReader();
const decoder = new TextDecoder("utf-8");
return processStream(reader, decoder, session, "Anthropic stream");
}
export async function callGoogleStream(session, conversation, model, temperature, maxTokens, signal) {
model = model.toLowerCase().replace(/\s+/g, '-');
console.log(`Calling Google (Gemini) API with model: ${model}`);
const response = await fetch("http://127.0.0.1:8000/gemini_stream",
createRequestOptions(session, {
messages: conversation,
temperature: temperature,
max_tokens: maxTokens,
model: model,
}, signal)
);
const reader = response.body.getReader();
const decoder = new TextDecoder("utf-8");
return processStream(reader, decoder, session, "Gemini stream");
}
export async function callHuggingFaceStream(session, conversation, model, temperature, maxTokens, signal) {
console.log(`Calling Hugging Face API with model: ${model}`);
const response = await fetch("http://127.0.0.1:8000/huggingface_stream",
createRequestOptions(session, {
messages: conversation,
temperature: temperature,
max_tokens: maxTokens,
model: model,
}, signal)
);
const reader = response.body.getReader();
const decoder = new TextDecoder("utf-8");
return processStream(reader, decoder, session, "Hugging Face stream");
}
export async function callMistralStream(session, conversation, model, temperature, maxTokens, signal) {
console.log(`Calling Mistral API with model: ${model}`);
const response = await fetch("http://127.0.0.1:8000/mistral_stream",
createRequestOptions(session, {
conversation: conversation,
temperature: temperature,
max_tokens: maxTokens,
model: model,
}, signal)
);
const reader = response.body.getReader();
const decoder = new TextDecoder("utf-8");
return processStream(reader, decoder, session, "Mistral stream");
}
/**
* Makes a batch request to generate a summary of the conversation
*/
export async function callLLMSummaryBatch(sessionId, conversation, model, temperature, maxTokens) {
const loadingOverlay = document.getElementById("loadingOverlay");
loadingOverlay.classList.add("active");
// Determine the appropriate endpoint based on the model
const modelToEndpoint = {
"gpt-4o": "openai_summary",
"claude": "anthropic_summary",
"gemini": "gemini_summary",
"huggingface": "huggingface_summary",
"mistral": "mistral_summary"
};
// Find the matching prefix
const modelPrefix = Object.keys(modelToEndpoint).find(prefix => model.startsWith(prefix));
if (!modelPrefix) {
throw new Error("Unsupported model for summary: " + model);
}
const endpoint = `http://127.0.0.1:8000/${modelToEndpoint[modelPrefix]}`;
try {
const response = await fetch(endpoint, {
method: "POST",
headers: {
"Content-Type": "application/json",
"X-Session-ID": sessionId,
},
body: JSON.stringify({
conversation: conversation,
temperature: temperature,
max_tokens: maxTokens,
model: model,
}),
});
const responseData = await response.json();
const summaryText = responseData.summary;
sessions[currentSessionIndex].summary = summaryText;
const summaryOverlay = document.getElementById('summaryOverlay');
if (summaryOverlay.classList.contains('active')) {
document.getElementById('summaryContent').innerHTML = marked.parse(summaryText);
}
return summaryText;
} finally {
loadingOverlay.classList.remove("active");
}
}
|