|
import os |
|
import gradio as gr |
|
import argparse |
|
from functools import partial |
|
from string import Template |
|
from utils import load_prompt, setup_gemini_client |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--ai-studio-api-key", type=str, default=os.getenv("GEMINI_API_KEY")) |
|
parser.add_argument("--vertexai", action="store_true", default=False) |
|
parser.add_argument("--vertexai-project", type=str, default="gcp-ml-172005") |
|
parser.add_argument("--vertexai-location", type=str, default="us-central1") |
|
parser.add_argument("--model", type=str, default="gemini-1.5-flash") |
|
|
|
parser.add_argument("--prompt-tmpl-path", type=str, default="configs/prompts.toml") |
|
parser.add_argument("--css-path", type=str, default="statics/styles.css") |
|
args = parser.parse_args() |
|
return args |
|
|
|
def find_attached_file(filename, attached_files): |
|
for file in attached_files: |
|
if file['name'] == filename: |
|
return file |
|
return None |
|
|
|
def echo(message, history, state): |
|
summary = "" |
|
attached_file = None |
|
if message['files']: |
|
path_local = message['files'][0] |
|
filename = os.path.basename(path_local) |
|
|
|
attached_file = find_attached_file(filename, state["attached_files"]) |
|
if attached_file is None: |
|
path_gcp = client.files.upload(path=path_local) |
|
state["attached_files"].append({ |
|
"name": filename, |
|
"path_local": path_local, |
|
"gcp_entity": path_gcp, |
|
"path_gcp": path_gcp.name, |
|
"mime_type=": path_gcp.mime_type, |
|
"expiration_time": path_gcp.expiration_time, |
|
}) |
|
attached_file = path_gcp |
|
|
|
|
|
|
|
user_message = [message['text']] |
|
if attached_file: user_message.append(attached_file) |
|
|
|
chat_history = state['messages'] |
|
chat_history = chat_history + user_message |
|
state['messages'] = chat_history |
|
|
|
response = client.models.generate_content( |
|
model="gemini-1.5-flash", |
|
contents=state['messages'] |
|
) |
|
|
|
|
|
if state['summary'] == "": |
|
state['summary'] = response.text |
|
else: |
|
response = client.models.generate_content( |
|
model="gemini-1.5-flash", |
|
contents=[ |
|
Template( |
|
prompt_tmpl['summarization']['prompt'] |
|
).safe_substitute( |
|
previous_summary=state['summary'], |
|
latest_conversation=str({"user": message['text'], "assistant": response.text}) |
|
) |
|
] |
|
) |
|
state['summary'] = response.text |
|
|
|
return response.text, state, state['summary'] |
|
|
|
def main(args): |
|
style_css = open(args.css_path, "r").read() |
|
|
|
global client, prompt_tmpl |
|
client = setup_gemini_client(args) |
|
prompt_tmpl = load_prompt(args) |
|
|
|
|
|
with gr.Blocks(css=style_css) as demo: |
|
|
|
state = gr.State({ |
|
"messages": [], |
|
"attached_files": [], |
|
"summary": "" |
|
}) |
|
|
|
gr.Markdown("# Adaptive Summarization") |
|
gr.Markdown("AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.") |
|
|
|
with gr.Row(elem_id="chat-interface"): |
|
with gr.Column(scale=3, elem_id="summary-window"): |
|
summary = gr.Markdown(label="Summary so far") |
|
|
|
with gr.Column(scale=7): |
|
gr.ChatInterface( |
|
multimodal=True, |
|
type="messages", |
|
fn=echo, |
|
additional_inputs=[state], |
|
additional_outputs=[state, summary], |
|
) |
|
|
|
return demo |
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
demo = main(args) |
|
demo.launch() |
|
|