demo / app.py
chansung's picture
Update app.py
cb90219 verified
raw
history blame
7.32 kB
import os
import argparse
import gradio as gr
from difflib import Differ
from string import Template
from utils import load_prompt, setup_gemini_client
from configs.responses import SummaryResponses
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--ai-studio-api-key", type=str, default=os.getenv("GEMINI_API_KEY"))
parser.add_argument("--vertexai", action="store_true", default=False)
parser.add_argument("--vertexai-project", type=str, default="gcp-ml-172005")
parser.add_argument("--vertexai-location", type=str, default="us-central1")
parser.add_argument("--model", type=str, default="gemini-1.5-flash")
parser.add_argument("--prompt-tmpl-path", type=str, default="configs/prompts.toml")
parser.add_argument("--css-path", type=str, default="statics/styles.css")
args = parser.parse_args()
return args
def find_attached_file(filename, attached_files):
for file in attached_files:
if file['name'] == filename:
return file
return None
def echo(message, history, state):
attached_file = None
if message['files']:
path_local = message['files'][0]
filename = os.path.basename(path_local)
attached_file = find_attached_file(filename, state["attached_files"])
if attached_file is None:
path_gcp = client.files.upload(path=path_local)
state["attached_files"].append({
"name": filename,
"path_local": path_local,
"gcp_entity": path_gcp,
"path_gcp": path_gcp.name,
"mime_type=": path_gcp.mime_type,
"expiration_time": path_gcp.expiration_time,
})
attached_file = path_gcp
user_message = [message['text']]
if attached_file: user_message.append(attached_file)
chat_history = state['messages']
chat_history = chat_history + user_message
state['messages'] = chat_history
response = client.models.generate_content(
model="gemini-1.5-flash",
contents=state['messages'],
)
model_response = response.text
# make summary
if state['summary'] != "":
response = client.models.generate_content(
model="gemini-1.5-flash",
contents=[
Template(
prompt_tmpl['summarization']['prompt']
).safe_substitute(
previous_summary=state['summary'],
latest_conversation=str({"user": message['text'], "assistant": model_response})
)
],
config={'response_mime_type': 'application/json',
'response_schema': SummaryResponses,
},
)
if state['summary'] != "":
prev_summary = state['summary_history'][-1]
else:
prev_summary = ""
d = Differ()
state['summary'] = (
response.parsed.summary
if getattr(response.parsed, "summary", None) is not None
else response.text
)
state['summary_history'].append(
response.parsed.summary
if getattr(response.parsed, "summary", None) is not None
else response.text
)
state['summary_diff_history'].append(
[
(token[2:], token[0] if token[0] != " " else None)
for token in d.compare(prev_summary, state['summary'])
]
)
return (
model_response,
state,
# state['summary'],
state['summary_diff_history'][-1],
state['summary_history'][-1],
gr.Slider(
maximum=len(state['summary_history']),
value=len(state['summary_history']),
visible=False if len(state['summary_history']) == 1 else True, interactive=True
),
)
def change_view_toggle(view_toggle):
if view_toggle == "Diff":
return (
gr.HighlightedText(visible=True),
gr.Markdown(visible=False)
)
else:
return (
gr.HighlightedText(visible=False),
gr.Markdown(visible=True)
)
def navigate_to_summary(summary_num, state):
return (
state['summary_diff_history'][summary_num-1],
state['summary_history'][summary_num-1]
)
def main(args):
style_css = open(args.css_path, "r").read()
global client, prompt_tmpl
client = setup_gemini_client(args)
prompt_tmpl = load_prompt(args)
## Gradio Blocks
with gr.Blocks(css=style_css) as demo:
# State per session
state = gr.State({
"messages": [],
"attached_files": [],
"summary": "",
"summary_history": [],
"summary_diff_history": []
})
with gr.Column():
gr.Markdown("# Adaptive Summarization")
gr.Markdown("AdaptSum stands for Adaptive Summarization. This project focuses on developing an LLM-powered system for dynamic summarization. Instead of generating entirely new summaries with each update, the system intelligently identifies and modifies only the necessary parts of the existing summary. This approach aims to create a more efficient and fluid summarization process within a continuous chat interaction with an LLM.")
with gr.Column():
with gr.Accordion("Adaptively Summarized Conversation", elem_id="adaptive-summary-accordion", open=False):
with gr.Row(elem_id="view-toggle-btn-container"):
view_toggle_btn = gr.Radio(
choices=["Diff", "Markdown"],
value="Markdown",
interactive=True,
elem_id="view-toggle-btn"
)
summary_diff = gr.HighlightedText(
label="Summary so far",
# value="No summary yet. As you chat with the assistant, the summary will be updated automatically.",
combine_adjacent=True,
show_legend=True,
color_map={"+": "red", "-": "green"},
elem_classes=["summary-window"],
visible=False
)
summary_md = gr.Markdown(
label="Summary so far",
value="No summary yet. As you chat with the assistant, the summary will be updated automatically.",
elem_classes=["summary-window"],
visible=True
)
summary_num = gr.Slider(label="summary history", minimum=1, maximum=1, step=1, show_reset_button=False, visible=False)
view_toggle_btn.change(change_view_toggle, inputs=[view_toggle_btn], outputs=[summary_diff, summary_md])
summary_num.release(navigate_to_summary, inputs=[summary_num, state], outputs=[summary_diff, summary_md])
with gr.Column("chat-window", elem_id="chat-window"):
gr.ChatInterface(
multimodal=True,
type="messages",
fn=echo,
additional_inputs=[state],
additional_outputs=[state, summary_diff, summary_md, summary_num],
)
return demo
if __name__ == "__main__":
args = parse_args()
demo = main(args)
demo.launch()