chansung's picture
Upload folder using huggingface_hub
fccc18d verified
// api.js
import { updateLastMessage } from './utils.js';
import { sessions, currentSessionIndex } from './sessions.js';
/**
* Chooses the correct API function based on the model setting.
*/
export async function callLLMStream(conversation, signal) {
const session = sessions[currentSessionIndex];
const { model, temperature, maxTokens } = session.settings;
if (model.startsWith("gpt-4o")) {
return callOpenAIStream(session, conversation, model, temperature, maxTokens, signal);
} else if (model.startsWith("claude")) {
return callAnthropicStream(session, conversation, model, temperature, maxTokens, signal);
} else if (model.startsWith("gemini")) {
return callGoogleStream(session, conversation, model, temperature, maxTokens, signal);
} else if (model.startsWith("huggingface")) {
return callHuggingFaceStream(session, conversation, model.replace("huggingface/", ""), temperature, maxTokens, signal);
} else if (model.startsWith("mistral")) {
return callMistralStream(session, conversation, model, temperature, maxTokens, signal);
} else {
throw new Error("Unsupported model: " + model);
}
}
/**
* Process streaming response from LLM APIs
*/
async function processStream(reader, decoder, session, errorPrefix = "Stream") {
let done = false;
let aiMessage = "";
let buffer = "";
updateLastMessage(session, aiMessage, true);
while (!done) {
const { value, done: doneReading } = await reader.read();
done = doneReading;
// Decode the chunk and append it to the buffer
buffer += decoder.decode(value, { stream: true });
// Process the buffer based on newline delimiters
const parts = buffer.split("\n\n");
// Keep the last part in buffer as it might be incomplete
buffer = parts.pop();
// Process complete parts
for (const part of parts) {
const trimmed = part.trim();
if (!trimmed.startsWith("data:")) continue;
const dataStr = trimmed.substring(5).trim(); // Remove "data:" prefix
if (dataStr === "[DONE]") {
done = true;
break;
}
try {
const parsed = JSON.parse(dataStr);
const delta = parsed.choices[0].delta.content;
if (delta) {
aiMessage += delta;
updateLastMessage(session, aiMessage, true);
}
} catch (err) {
console.error(`${errorPrefix} parsing error:`, err, "Chunk:", dataStr);
}
}
}
// Process any remaining buffered data
if (buffer.trim()) {
try {
const trimmed = buffer.trim();
if (trimmed.startsWith("data:")) {
const dataStr = trimmed.substring(5).trim();
if (dataStr !== "[DONE]") {
const parsed = JSON.parse(dataStr);
const delta = parsed.choices[0].delta.content;
if (delta) {
aiMessage += delta;
updateLastMessage(session, aiMessage, true);
}
}
}
} catch (err) {
console.error(`Final buffer parsing error:`, err, "Buffer:", buffer);
}
}
updateLastMessage(session, aiMessage, false);
return aiMessage;
}
/**
* Helper function to create API request options
*/
function createRequestOptions(session, payload, signal) {
return {
method: "POST",
headers: {
"Content-Type": "application/json",
"X-Session-ID": session.id,
},
body: JSON.stringify(payload),
signal: signal,
};
}
export async function callOpenAIStream(session, conversation, model, temperature, maxTokens, signal) {
const response = await fetch("http://127.0.0.1:8000/openai_stream",
createRequestOptions(session, {
conversation: conversation,
temperature: temperature,
max_tokens: maxTokens,
model: model,
}, signal)
);
const reader = response.body.getReader();
const decoder = new TextDecoder("utf-8");
return processStream(reader, decoder, session, "OpenAI stream");
}
export async function callAnthropicStream(session, conversation, model, temperature, maxTokens, signal) {
model = model.toLowerCase().replace(/\s+/g, '-').replace(/\./g, '-');
console.log(`Calling Anthropic API with model: ${model}`);
const response = await fetch("http://127.0.0.1:8000/anthropic_stream",
createRequestOptions(session, {
messages: conversation,
temperature: temperature,
max_tokens: maxTokens,
model: model + "-latest",
}, signal)
);
const reader = response.body.getReader();
const decoder = new TextDecoder("utf-8");
return processStream(reader, decoder, session, "Anthropic stream");
}
export async function callGoogleStream(session, conversation, model, temperature, maxTokens, signal) {
model = model.toLowerCase().replace(/\s+/g, '-');
console.log(`Calling Google (Gemini) API with model: ${model}`);
const response = await fetch("http://127.0.0.1:8000/gemini_stream",
createRequestOptions(session, {
messages: conversation,
temperature: temperature,
max_tokens: maxTokens,
model: model,
}, signal)
);
const reader = response.body.getReader();
const decoder = new TextDecoder("utf-8");
return processStream(reader, decoder, session, "Gemini stream");
}
export async function callHuggingFaceStream(session, conversation, model, temperature, maxTokens, signal) {
console.log(`Calling Hugging Face API with model: ${model}`);
const response = await fetch("http://127.0.0.1:8000/huggingface_stream",
createRequestOptions(session, {
messages: conversation,
temperature: temperature,
max_tokens: maxTokens,
model: model,
}, signal)
);
const reader = response.body.getReader();
const decoder = new TextDecoder("utf-8");
return processStream(reader, decoder, session, "Hugging Face stream");
}
export async function callMistralStream(session, conversation, model, temperature, maxTokens, signal) {
console.log(`Calling Mistral API with model: ${model}`);
const response = await fetch("http://127.0.0.1:8000/mistral_stream",
createRequestOptions(session, {
conversation: conversation,
temperature: temperature,
max_tokens: maxTokens,
model: model,
}, signal)
);
const reader = response.body.getReader();
const decoder = new TextDecoder("utf-8");
return processStream(reader, decoder, session, "Mistral stream");
}
/**
* Makes a batch request to generate a summary of the conversation
*/
export async function callLLMSummaryBatch(sessionId, conversation, model, temperature, maxTokens) {
const loadingOverlay = document.getElementById("loadingOverlay");
loadingOverlay.classList.add("active");
// Determine the appropriate endpoint based on the model
const modelToEndpoint = {
"gpt-4o": "openai_summary",
"claude": "anthropic_summary",
"gemini": "gemini_summary",
"huggingface": "huggingface_summary",
"mistral": "mistral_summary"
};
// Find the matching prefix
const modelPrefix = Object.keys(modelToEndpoint).find(prefix => model.startsWith(prefix));
if (!modelPrefix) {
throw new Error("Unsupported model for summary: " + model);
}
const endpoint = `http://127.0.0.1:8000/${modelToEndpoint[modelPrefix]}`;
try {
const response = await fetch(endpoint, {
method: "POST",
headers: {
"Content-Type": "application/json",
"X-Session-ID": sessionId,
},
body: JSON.stringify({
conversation: conversation,
temperature: temperature,
max_tokens: maxTokens,
model: model,
}),
});
const responseData = await response.json();
const summaryText = responseData.summary;
sessions[currentSessionIndex].summary = summaryText;
const summaryOverlay = document.getElementById('summaryOverlay');
if (summaryOverlay.classList.contains('active')) {
document.getElementById('summaryContent').innerHTML = marked.parse(summaryText);
}
return summaryText;
} finally {
loadingOverlay.classList.remove("active");
}
}