chansung's picture
Upload folder using huggingface_hub
fccc18d verified
import os
import json
import asyncio
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import StreamingResponse
from fastapi import APIRouter
from openai import AsyncOpenAI
from .utils import handle_attachments, extract_text_from_pdf
router = APIRouter()
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
client = AsyncOpenAI(api_key=OPENAI_API_KEY)
attachments_in_openai = {}
@router.post("/openai_stream")
async def openai_stream(request: Request):
try:
body = await request.json()
except Exception as e:
raise HTTPException(status_code=400, detail="Invalid JSON payload") from e
conversation = body.get("conversation")
if not conversation:
raise HTTPException(status_code=400, detail="Missing 'conversation' in payload")
print("--------------------------------")
print(body)
print()
temperature = body.get("temperature", 0.7)
max_tokens = body.get("max_tokens", 256)
model = body.get("model", "gpt-4o-mini")
# Get session ID from the request headers
session_id = request.headers.get("X-Session-ID")
if session_id not in attachments_in_openai:
attachments_in_openai[session_id] = {}
if not session_id:
raise HTTPException(status_code=400, detail="Missing 'session_id' in payload")
# Handle file attachments if present
conversation = await handle_attachments(session_id, conversation)
gpt_messages = []
for msg in conversation:
role = "user" if msg["role"] == "user" else "assistant"
pdf_texts = []
if "attachments" in msg:
for attachment in msg["attachments"]:
if attachment["file_path"].endswith(".pdf"):
if attachment["file_path"] not in attachments_in_openai[session_id]:
pdf_text = await extract_text_from_pdf(attachment["file_path"])
pdf_texts.append([attachment["name"], pdf_text])
attachments_in_openai[session_id][attachment["name"]] = pdf_text
else:
pdf_texts.append([attachment["name"], attachments_in_openai[session_id][attachment["name"]]])
gpt_messages.append({"role": role, "content": msg["content"]})
for pdf_text in pdf_texts:
gpt_messages.append({"role": "user", "content": f"{pdf_text[0]}\n\n{pdf_text[1]}"})
async def event_generator():
line_count = 0
try:
print(f"Starting stream for model: {model}, temperature: {temperature}, max_tokens: {max_tokens}")
# Use the SDK to create a streaming completion
stream = await client.chat.completions.create(
model=model,
messages=gpt_messages,
temperature=temperature,
max_tokens=max_tokens,
stream=True
)
async for chunk in stream:
if chunk.choices and chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
line_count += 1
if line_count % 10 == 0:
print(f"Processed {line_count} stream chunks")
response_json = json.dumps({
"choices": [{"delta": {"content": content}}]
})
yield f"data: {response_json}\n\n"
print("Stream completed successfully")
yield "data: [DONE]\n\n"
except asyncio.CancelledError:
print("Streaming aborted by client")
# You can choose to do cleanup here if needed.
raise # Re-raise to allow FastAPI to handle the cancellation properly.
except Exception as e:
print(f"Error during streaming: {str(e)}")
yield f"data: {{\"error\": \"{str(e)}\"}}\n\n"
finally:
print(f"Stream ended after processing {line_count} chunks")
print("Returning StreamingResponse to client")
return StreamingResponse(event_generator(), media_type="text/event-stream")