import os import json from fastapi import FastAPI, Request, HTTPException from fastapi.responses import StreamingResponse from fastapi import APIRouter from anthropic import Anthropic from .utils import handle_attachments router = APIRouter() ANTHROPIC_API_KEY = os.environ.get("ANTHROPIC_API_KEY") attachments_in_anthropic = {} @router.post("/anthropic_stream") async def anthropic_stream(request: Request): """ Stream responses from Anthropic's Claude models. """ print("Received request for Anthropic streaming") # Parse the request body body = await request.json() conversation = body.get("messages", []) temperature = body.get("temperature", 0.7) max_tokens = body.get("max_tokens", 1024) model = body.get("model", "claude-3-opus-20240229") # Get session ID from the request session_id = request.headers.get("X-Session-ID") if session_id not in attachments_in_anthropic: attachments_in_anthropic[session_id] = {} if not session_id: raise HTTPException(status_code=400, detail="Missing 'session_id' in payload") # Handle file attachments if present conversation = await handle_attachments(session_id, conversation, remove_content=False) anthropic_messages = [] for msg in conversation: role = "user" if msg["role"] == "user" else "assistant" pdf_base64s = [] if "attachments" in msg: for attachment in msg["attachments"]: if attachment["file_path"].endswith(".pdf"): print(attachment) if attachment["file_path"] not in attachments_in_anthropic[session_id]: pdf_base64 = {"type": "document", "source": {"type": "base64", "media_type": "application/pdf", "data": attachment["content"]}} pdf_base64s.append(pdf_base64) attachments_in_anthropic[session_id][attachment["name"]] = pdf_base64 else: pdf_base64s.append(attachments_in_anthropic[session_id][attachment["name"]]) anthropic_messages.append({"role": role, "content": pdf_base64s + [{"type": "text", "text": msg["content"]}]}) line_count = 0 async def event_generator(): try: # Initialize Anthropic client client = Anthropic(api_key=ANTHROPIC_API_KEY) # Start the streaming response with client.messages.stream( model=model, messages=anthropic_messages, max_tokens=max_tokens, temperature=temperature ) as stream: for chunk in stream: if hasattr(chunk, 'delta') and hasattr(chunk.delta, 'text') and chunk.delta.text: content = chunk.delta.text nonlocal line_count line_count += 1 if line_count % 10 == 0: print(f"Processed {line_count} Anthropic stream chunks") # Format the response to match OpenAI format for client compatibility response_json = json.dumps({ "choices": [{"delta": {"content": content}}] }) yield f"data: {response_json}\n\n" # Send the [DONE] marker print("Anthropic stream completed successfully") yield "data: [DONE]\n\n" except Exception as e: print(f"Error during Anthropic streaming: {str(e)}") yield f"data: {{\"error\": \"{str(e)}\"}}\n\n" finally: print(f"Anthropic stream ended after processing {line_count if 'line_count' in locals() else 0} chunks") print("Returning StreamingResponse from Anthropic to client") return StreamingResponse(event_generator(), media_type="text/event-stream")