Spaces:
Sleeping
Sleeping
Commit
·
9718b31
1
Parent(s):
5b8ba96
Initial Commit
Browse files- app.py +58 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import wandb
|
2 |
+
import torch
|
3 |
+
import re
|
4 |
+
|
5 |
+
import gradio
|
6 |
+
|
7 |
+
from transformers import GPT2Tokenizer,GPT2LMHeadModel
|
8 |
+
|
9 |
+
wandb.login()
|
10 |
+
|
11 |
+
run = wandb.init(project="Question_Answer", job_type="model_loading", id='xeew4vz7', resume="must")
|
12 |
+
|
13 |
+
artifact = run.use_artifact('Question_Answer/final_model_QA:v0')
|
14 |
+
|
15 |
+
#artifact = run.use_artifact('enron-subgen-gpt2/model-1hhufzjv:v0')
|
16 |
+
# Download the artifact to a directory
|
17 |
+
artifact_dir = artifact.download()
|
18 |
+
|
19 |
+
MODEL_KEY = 'distilgpt2'
|
20 |
+
tokenizer= GPT2Tokenizer.from_pretrained(MODEL_KEY)
|
21 |
+
tokenizer.add_special_tokens({'pad_token':'{PAD}'})
|
22 |
+
|
23 |
+
model = GPT2LMHeadModel.from_pretrained(artifact_dir)
|
24 |
+
model.resize_token_embeddings(len(tokenizer))
|
25 |
+
|
26 |
+
def clean_text(text):
|
27 |
+
# Lowercase the text
|
28 |
+
|
29 |
+
res = re.sub(r'\d', '', text)
|
30 |
+
|
31 |
+
text = text.lower()
|
32 |
+
# Remove special characters
|
33 |
+
text = re.sub(r'\W', ' ', text)
|
34 |
+
# Remove extra white spaces
|
35 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
36 |
+
return text
|
37 |
+
|
38 |
+
def generateAnswer(question){
|
39 |
+
|
40 |
+
question = "<question>" + clean_text(question) + "<answer>"
|
41 |
+
|
42 |
+
prompt = []
|
43 |
+
prompt.append(question)
|
44 |
+
|
45 |
+
prompts_batch_ids = tokenizer(prompt,
|
46 |
+
padding=True, truncation=True, return_tensors='pt').to(model.device)
|
47 |
+
output_ids = model.generate(
|
48 |
+
**prompts_batch_ids, max_new_tokens=50,
|
49 |
+
pad_token_id=tokenizer.pad_token_id)
|
50 |
+
outputs_batch = [seq.split('<answer>')[1] for seq in
|
51 |
+
tokenizer.batch_decode(output_ids, skip_special_tokens=True)]
|
52 |
+
print(outputs_batch)
|
53 |
+
return outputs_batch[0]
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
iface = gradio.Interface(fn=generateAnswer, inputs="text", outputs="text")
|
58 |
+
iface.launch()
|
requirements.txt
ADDED
File without changes
|