|
import os
|
|
import types
|
|
from typing import Tuple
|
|
|
|
import torch
|
|
import torchvision.transforms as T
|
|
import torch.nn.functional as F
|
|
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
|
|
|
import comfy
|
|
import folder_paths
|
|
|
|
from .model_patch import add_model_patch_option, patch_model_function_wrapper
|
|
|
|
from .brushnet.brushnet import BrushNetModel
|
|
from .brushnet.brushnet_ca import BrushNetModel as PowerPaintModel
|
|
|
|
from .brushnet.powerpaint_utils import TokenizerWrapper, add_tokens
|
|
|
|
current_directory = os.path.dirname(os.path.abspath(__file__))
|
|
brushnet_config_file = os.path.join(current_directory, 'brushnet', 'brushnet.json')
|
|
brushnet_xl_config_file = os.path.join(current_directory, 'brushnet', 'brushnet_xl.json')
|
|
powerpaint_config_file = os.path.join(current_directory,'brushnet', 'powerpaint.json')
|
|
|
|
sd15_scaling_factor = 0.18215
|
|
sdxl_scaling_factor = 0.13025
|
|
|
|
ModelsToUnload = [comfy.sd1_clip.SD1ClipModel,
|
|
comfy.ldm.models.autoencoder.AutoencoderKL
|
|
]
|
|
|
|
|
|
class BrushNetLoader:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(self):
|
|
self.inpaint_files = get_files_with_extension('inpaint')
|
|
return {"required":
|
|
{
|
|
"brushnet": ([file for file in self.inpaint_files], ),
|
|
"dtype": (['float16', 'bfloat16', 'float32', 'float64'], ),
|
|
},
|
|
}
|
|
|
|
CATEGORY = "inpaint"
|
|
RETURN_TYPES = ("BRMODEL",)
|
|
RETURN_NAMES = ("brushnet",)
|
|
|
|
FUNCTION = "brushnet_loading"
|
|
|
|
def brushnet_loading(self, brushnet, dtype):
|
|
brushnet_file = os.path.join(self.inpaint_files[brushnet], brushnet)
|
|
is_SDXL = False
|
|
is_PP = False
|
|
sd = comfy.utils.load_torch_file(brushnet_file)
|
|
brushnet_down_block, brushnet_mid_block, brushnet_up_block, keys = brushnet_blocks(sd)
|
|
del sd
|
|
if brushnet_down_block == 24 and brushnet_mid_block == 2 and brushnet_up_block == 30:
|
|
is_SDXL = False
|
|
if keys == 322:
|
|
is_PP = False
|
|
print('BrushNet model type: SD1.5')
|
|
else:
|
|
is_PP = True
|
|
print('PowerPaint model type: SD1.5')
|
|
elif brushnet_down_block == 18 and brushnet_mid_block == 2 and brushnet_up_block == 22:
|
|
print('BrushNet model type: Loading SDXL')
|
|
is_SDXL = True
|
|
is_PP = False
|
|
else:
|
|
raise Exception("Unknown BrushNet model")
|
|
|
|
with init_empty_weights():
|
|
if is_SDXL:
|
|
brushnet_config = BrushNetModel.load_config(brushnet_xl_config_file)
|
|
brushnet_model = BrushNetModel.from_config(brushnet_config)
|
|
elif is_PP:
|
|
brushnet_config = PowerPaintModel.load_config(powerpaint_config_file)
|
|
brushnet_model = PowerPaintModel.from_config(brushnet_config)
|
|
else:
|
|
brushnet_config = BrushNetModel.load_config(brushnet_config_file)
|
|
brushnet_model = BrushNetModel.from_config(brushnet_config)
|
|
|
|
if is_PP:
|
|
print("PowerPaint model file:", brushnet_file)
|
|
else:
|
|
print("BrushNet model file:", brushnet_file)
|
|
|
|
if dtype == 'float16':
|
|
torch_dtype = torch.float16
|
|
elif dtype == 'bfloat16':
|
|
torch_dtype = torch.bfloat16
|
|
elif dtype == 'float32':
|
|
torch_dtype = torch.float32
|
|
else:
|
|
torch_dtype = torch.float64
|
|
|
|
brushnet_model = load_checkpoint_and_dispatch(
|
|
brushnet_model,
|
|
brushnet_file,
|
|
device_map="sequential",
|
|
max_memory=None,
|
|
offload_folder=None,
|
|
offload_state_dict=False,
|
|
dtype=torch_dtype,
|
|
force_hooks=False,
|
|
)
|
|
|
|
if is_PP:
|
|
print("PowerPaint model is loaded")
|
|
elif is_SDXL:
|
|
print("BrushNet SDXL model is loaded")
|
|
else:
|
|
print("BrushNet SD1.5 model is loaded")
|
|
|
|
return ({"brushnet": brushnet_model, "SDXL": is_SDXL, "PP": is_PP, "dtype": torch_dtype}, )
|
|
|
|
|
|
class PowerPaintCLIPLoader:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(self):
|
|
self.inpaint_files = get_files_with_extension('inpaint', ['.bin'])
|
|
self.clip_files = get_files_with_extension('clip')
|
|
return {"required":
|
|
{
|
|
"base": ([file for file in self.clip_files], ),
|
|
"powerpaint": ([file for file in self.inpaint_files], ),
|
|
},
|
|
}
|
|
|
|
CATEGORY = "inpaint"
|
|
RETURN_TYPES = ("CLIP",)
|
|
RETURN_NAMES = ("clip",)
|
|
|
|
FUNCTION = "ppclip_loading"
|
|
|
|
def ppclip_loading(self, base, powerpaint):
|
|
base_CLIP_file = os.path.join(self.clip_files[base], base)
|
|
pp_CLIP_file = os.path.join(self.inpaint_files[powerpaint], powerpaint)
|
|
|
|
pp_clip = comfy.sd.load_clip(ckpt_paths=[base_CLIP_file])
|
|
|
|
print('PowerPaint base CLIP file: ', base_CLIP_file)
|
|
|
|
pp_tokenizer = TokenizerWrapper(pp_clip.tokenizer.clip_l.tokenizer)
|
|
pp_text_encoder = pp_clip.patcher.model.clip_l.transformer
|
|
|
|
add_tokens(
|
|
tokenizer = pp_tokenizer,
|
|
text_encoder = pp_text_encoder,
|
|
placeholder_tokens = ["P_ctxt", "P_shape", "P_obj"],
|
|
initialize_tokens = ["a", "a", "a"],
|
|
num_vectors_per_token = 10,
|
|
)
|
|
|
|
pp_text_encoder.load_state_dict(comfy.utils.load_torch_file(pp_CLIP_file), strict=False)
|
|
|
|
print('PowerPaint CLIP file: ', pp_CLIP_file)
|
|
|
|
pp_clip.tokenizer.clip_l.tokenizer = pp_tokenizer
|
|
pp_clip.patcher.model.clip_l.transformer = pp_text_encoder
|
|
|
|
return (pp_clip,)
|
|
|
|
|
|
class PowerPaint:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{
|
|
"model": ("MODEL",),
|
|
"vae": ("VAE", ),
|
|
"image": ("IMAGE",),
|
|
"mask": ("MASK",),
|
|
"powerpaint": ("BRMODEL", ),
|
|
"clip": ("CLIP", ),
|
|
"positive": ("CONDITIONING", ),
|
|
"negative": ("CONDITIONING", ),
|
|
"fitting" : ("FLOAT", {"default": 1.0, "min": 0.3, "max": 1.0}),
|
|
"function": (['text guided', 'shape guided', 'object removal', 'context aware', 'image outpainting'], ),
|
|
"scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}),
|
|
"start_at": ("INT", {"default": 0, "min": 0, "max": 10000}),
|
|
"end_at": ("INT", {"default": 10000, "min": 0, "max": 10000}),
|
|
"save_memory": (['none', 'auto', 'max'], ),
|
|
},
|
|
}
|
|
|
|
CATEGORY = "inpaint"
|
|
RETURN_TYPES = ("MODEL","CONDITIONING","CONDITIONING","LATENT",)
|
|
RETURN_NAMES = ("model","positive","negative","latent",)
|
|
|
|
FUNCTION = "model_update"
|
|
|
|
def model_update(self, model, vae, image, mask, powerpaint, clip, positive, negative, fitting, function, scale, start_at, end_at, save_memory):
|
|
|
|
is_SDXL, is_PP = check_compatibilty(model, powerpaint)
|
|
if not is_PP:
|
|
raise Exception("BrushNet model was loaded, please use BrushNet node")
|
|
|
|
|
|
model = model.clone()
|
|
|
|
|
|
|
|
masked_image, mask = prepare_image(image, mask)
|
|
|
|
batch = masked_image.shape[0]
|
|
|
|
|
|
|
|
if hasattr(model.model.model_config, 'latent_format') and hasattr(model.model.model_config.latent_format, 'scale_factor'):
|
|
scaling_factor = model.model.model_config.latent_format.scale_factor
|
|
else:
|
|
scaling_factor = sd15_scaling_factor
|
|
|
|
torch_dtype = powerpaint['dtype']
|
|
|
|
|
|
conditioning_latents = get_image_latents(masked_image, mask, vae, scaling_factor)
|
|
conditioning_latents[0] = conditioning_latents[0].to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
|
|
conditioning_latents[1] = conditioning_latents[1].to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
|
|
|
|
|
|
|
|
if function == "object removal":
|
|
promptA = "P_ctxt"
|
|
promptB = "P_ctxt"
|
|
negative_promptA = "P_obj"
|
|
negative_promptB = "P_obj"
|
|
print('You should add to positive prompt: "empty scene blur"')
|
|
|
|
elif function == "context aware":
|
|
promptA = "P_ctxt"
|
|
promptB = "P_ctxt"
|
|
negative_promptA = ""
|
|
negative_promptB = ""
|
|
|
|
print('You should add to positive prompt: "empty scene"')
|
|
elif function == "shape guided":
|
|
promptA = "P_shape"
|
|
promptB = "P_ctxt"
|
|
negative_promptA = "P_shape"
|
|
negative_promptB = "P_ctxt"
|
|
elif function == "image outpainting":
|
|
promptA = "P_ctxt"
|
|
promptB = "P_ctxt"
|
|
negative_promptA = "P_obj"
|
|
negative_promptB = "P_obj"
|
|
|
|
print('You should add to positive prompt: "empty scene"')
|
|
else:
|
|
promptA = "P_obj"
|
|
promptB = "P_obj"
|
|
negative_promptA = "P_obj"
|
|
negative_promptB = "P_obj"
|
|
|
|
tokens = clip.tokenize(promptA)
|
|
prompt_embedsA = clip.encode_from_tokens(tokens, return_pooled=False)
|
|
|
|
tokens = clip.tokenize(negative_promptA)
|
|
negative_prompt_embedsA = clip.encode_from_tokens(tokens, return_pooled=False)
|
|
|
|
tokens = clip.tokenize(promptB)
|
|
prompt_embedsB = clip.encode_from_tokens(tokens, return_pooled=False)
|
|
|
|
tokens = clip.tokenize(negative_promptB)
|
|
negative_prompt_embedsB = clip.encode_from_tokens(tokens, return_pooled=False)
|
|
|
|
prompt_embeds_pp = (prompt_embedsA * fitting + (1.0 - fitting) * prompt_embedsB).to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
|
|
negative_prompt_embeds_pp = (negative_prompt_embedsA * fitting + (1.0 - fitting) * negative_prompt_embedsB).to(dtype=torch_dtype).to(powerpaint['brushnet'].device)
|
|
|
|
|
|
del vae
|
|
del clip
|
|
for loaded_model in comfy.model_management.current_loaded_models:
|
|
if type(loaded_model.model.model) in ModelsToUnload:
|
|
comfy.model_management.current_loaded_models.remove(loaded_model)
|
|
loaded_model.model_unload()
|
|
del loaded_model
|
|
|
|
|
|
|
|
brushnet_conditioning_scale = scale
|
|
control_guidance_start = start_at
|
|
control_guidance_end = end_at
|
|
|
|
if save_memory != 'none':
|
|
powerpaint['brushnet'].set_attention_slice(save_memory)
|
|
|
|
add_brushnet_patch(model,
|
|
powerpaint['brushnet'],
|
|
torch_dtype,
|
|
conditioning_latents,
|
|
(brushnet_conditioning_scale, control_guidance_start, control_guidance_end),
|
|
negative_prompt_embeds_pp, prompt_embeds_pp,
|
|
None, None, None,
|
|
False)
|
|
|
|
latent = torch.zeros([batch, 4, conditioning_latents[0].shape[2], conditioning_latents[0].shape[3]], device=powerpaint['brushnet'].device)
|
|
|
|
return (model, positive, negative, {"samples":latent},)
|
|
|
|
|
|
class BrushNet:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{
|
|
"model": ("MODEL",),
|
|
"vae": ("VAE", ),
|
|
"image": ("IMAGE",),
|
|
"mask": ("MASK",),
|
|
"brushnet": ("BRMODEL", ),
|
|
"positive": ("CONDITIONING", ),
|
|
"negative": ("CONDITIONING", ),
|
|
"scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}),
|
|
"start_at": ("INT", {"default": 0, "min": 0, "max": 10000}),
|
|
"end_at": ("INT", {"default": 10000, "min": 0, "max": 10000}),
|
|
},
|
|
}
|
|
|
|
CATEGORY = "inpaint"
|
|
RETURN_TYPES = ("MODEL","CONDITIONING","CONDITIONING","LATENT",)
|
|
RETURN_NAMES = ("model","positive","negative","latent",)
|
|
|
|
FUNCTION = "model_update"
|
|
|
|
def model_update(self, model, vae, image, mask, brushnet, positive, negative, scale, start_at, end_at):
|
|
|
|
is_SDXL, is_PP = check_compatibilty(model, brushnet)
|
|
|
|
if is_PP:
|
|
raise Exception("PowerPaint model was loaded, please use PowerPaint node")
|
|
|
|
|
|
model = model.clone()
|
|
|
|
|
|
|
|
masked_image, mask = prepare_image(image, mask)
|
|
|
|
batch = masked_image.shape[0]
|
|
width = masked_image.shape[2]
|
|
height = masked_image.shape[1]
|
|
|
|
if hasattr(model.model.model_config, 'latent_format') and hasattr(model.model.model_config.latent_format, 'scale_factor'):
|
|
scaling_factor = model.model.model_config.latent_format.scale_factor
|
|
elif is_SDXL:
|
|
scaling_factor = sdxl_scaling_factor
|
|
else:
|
|
scaling_factor = sd15_scaling_factor
|
|
|
|
torch_dtype = brushnet['dtype']
|
|
|
|
|
|
conditioning_latents = get_image_latents(masked_image, mask, vae, scaling_factor)
|
|
conditioning_latents[0] = conditioning_latents[0].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
|
|
conditioning_latents[1] = conditioning_latents[1].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
|
|
|
|
|
|
del vae
|
|
for loaded_model in comfy.model_management.current_loaded_models:
|
|
if type(loaded_model.model.model) in ModelsToUnload:
|
|
comfy.model_management.current_loaded_models.remove(loaded_model)
|
|
loaded_model.model_unload()
|
|
del loaded_model
|
|
|
|
|
|
|
|
prompt_embeds = positive[0][0].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
|
|
negative_prompt_embeds = negative[0][0].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
|
|
|
|
max_tokens = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
|
|
if prompt_embeds.shape[1] < max_tokens:
|
|
multiplier = max_tokens // 77 - prompt_embeds.shape[1] // 77
|
|
prompt_embeds = torch.concat([prompt_embeds] + [prompt_embeds[:,-77:,:]] * multiplier, dim=1)
|
|
print('BrushNet: negative prompt more than 75 tokens:', negative_prompt_embeds.shape, 'multiplying prompt_embeds')
|
|
if negative_prompt_embeds.shape[1] < max_tokens:
|
|
multiplier = max_tokens // 77 - negative_prompt_embeds.shape[1] // 77
|
|
negative_prompt_embeds = torch.concat([negative_prompt_embeds] + [negative_prompt_embeds[:,-77:,:]] * multiplier, dim=1)
|
|
print('BrushNet: positive prompt more than 75 tokens:', prompt_embeds.shape, 'multiplying negative_prompt_embeds')
|
|
|
|
if len(positive[0]) > 1 and 'pooled_output' in positive[0][1] and positive[0][1]['pooled_output'] is not None:
|
|
pooled_prompt_embeds = positive[0][1]['pooled_output'].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
|
|
else:
|
|
print('BrushNet: positive conditioning has not pooled_output')
|
|
if is_SDXL:
|
|
print('BrushNet will not produce correct results')
|
|
pooled_prompt_embeds = torch.empty([2, 1280], device=brushnet['brushnet'].device).to(dtype=torch_dtype)
|
|
|
|
if len(negative[0]) > 1 and 'pooled_output' in negative[0][1] and negative[0][1]['pooled_output'] is not None:
|
|
negative_pooled_prompt_embeds = negative[0][1]['pooled_output'].to(dtype=torch_dtype).to(brushnet['brushnet'].device)
|
|
else:
|
|
print('BrushNet: negative conditioning has not pooled_output')
|
|
if is_SDXL:
|
|
print('BrushNet will not produce correct results')
|
|
negative_pooled_prompt_embeds = torch.empty([1, pooled_prompt_embeds.shape[1]], device=brushnet['brushnet'].device).to(dtype=torch_dtype)
|
|
|
|
time_ids = torch.FloatTensor([[height, width, 0., 0., height, width]]).to(dtype=torch_dtype).to(brushnet['brushnet'].device)
|
|
|
|
if not is_SDXL:
|
|
pooled_prompt_embeds = None
|
|
negative_pooled_prompt_embeds = None
|
|
time_ids = None
|
|
|
|
|
|
|
|
brushnet_conditioning_scale = scale
|
|
control_guidance_start = start_at
|
|
control_guidance_end = end_at
|
|
|
|
add_brushnet_patch(model,
|
|
brushnet['brushnet'],
|
|
torch_dtype,
|
|
conditioning_latents,
|
|
(brushnet_conditioning_scale, control_guidance_start, control_guidance_end),
|
|
prompt_embeds, negative_prompt_embeds,
|
|
pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids,
|
|
False)
|
|
|
|
latent = torch.zeros([batch, 4, conditioning_latents[0].shape[2], conditioning_latents[0].shape[3]], device=brushnet['brushnet'].device)
|
|
|
|
return (model, positive, negative, {"samples":latent},)
|
|
|
|
|
|
class BlendInpaint:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{
|
|
"inpaint": ("IMAGE",),
|
|
"original": ("IMAGE",),
|
|
"mask": ("MASK",),
|
|
"kernel": ("INT", {"default": 10, "min": 1, "max": 1000}),
|
|
"sigma": ("FLOAT", {"default": 10.0, "min": 0.01, "max": 1000}),
|
|
},
|
|
"optional":
|
|
{
|
|
"origin": ("VECTOR",),
|
|
},
|
|
}
|
|
|
|
CATEGORY = "inpaint"
|
|
RETURN_TYPES = ("IMAGE","MASK",)
|
|
RETURN_NAMES = ("image","MASK",)
|
|
|
|
FUNCTION = "blend_inpaint"
|
|
|
|
def blend_inpaint(self, inpaint: torch.Tensor, original: torch.Tensor, mask, kernel: int, sigma:int, origin=None) -> Tuple[torch.Tensor]:
|
|
|
|
original, mask = check_image_mask(original, mask, 'Blend Inpaint')
|
|
|
|
if len(inpaint.shape) < 4:
|
|
|
|
inpaint = inpaint[None,:,:,:]
|
|
|
|
if inpaint.shape[0] < original.shape[0]:
|
|
print("Blend Inpaint gets batch of original images (%d) but only (%d) inpaint images" % (original.shape[0], inpaint.shape[0]))
|
|
original= original[:inpaint.shape[0],:,:]
|
|
mask = mask[:inpaint.shape[0],:,:]
|
|
|
|
if inpaint.shape[0] > original.shape[0]:
|
|
|
|
count = 0
|
|
original_list = []
|
|
mask_list = []
|
|
origin_list = []
|
|
while (count < inpaint.shape[0]):
|
|
for i in range(original.shape[0]):
|
|
original_list.append(original[i][None,:,:,:])
|
|
mask_list.append(mask[i][None,:,:])
|
|
if origin is not None:
|
|
origin_list.append(origin[i][None,:])
|
|
count += 1
|
|
if count >= inpaint.shape[0]:
|
|
break
|
|
original = torch.concat(original_list, dim=0)
|
|
mask = torch.concat(mask_list, dim=0)
|
|
if origin is not None:
|
|
origin = torch.concat(origin_list, dim=0)
|
|
|
|
if kernel % 2 == 0:
|
|
kernel += 1
|
|
transform = T.GaussianBlur(kernel_size=(kernel, kernel), sigma=(sigma, sigma))
|
|
|
|
ret = []
|
|
blurred = []
|
|
for i in range(inpaint.shape[0]):
|
|
if origin is None:
|
|
blurred_mask = transform(mask[i][None,None,:,:]).to(original.device).to(original.dtype)
|
|
blurred.append(blurred_mask[0])
|
|
|
|
result = torch.nn.functional.interpolate(
|
|
inpaint[i][None,:,:,:].permute(0, 3, 1, 2),
|
|
size=(
|
|
original[i].shape[0],
|
|
original[i].shape[1],
|
|
)
|
|
).permute(0, 2, 3, 1).to(original.device).to(original.dtype)
|
|
else:
|
|
|
|
height, width, _ = original[i].shape
|
|
x0 = origin[i][0].item()
|
|
y0 = origin[i][1].item()
|
|
|
|
if mask[i].shape[0] < height or mask[i].shape[1] < width:
|
|
padded_mask = F.pad(input=mask[i], pad=(x0, width-x0-mask[i].shape[1],
|
|
y0, height-y0-mask[i].shape[0]), mode='constant', value=0)
|
|
else:
|
|
padded_mask = mask[i]
|
|
blurred_mask = transform(padded_mask[None,None,:,:]).to(original.device).to(original.dtype)
|
|
blurred.append(blurred_mask[0][0])
|
|
|
|
result = F.pad(input=inpaint[i], pad=(0, 0, x0, width-x0-inpaint[i].shape[1],
|
|
y0, height-y0-inpaint[i].shape[0]), mode='constant', value=0)
|
|
result = result[None,:,:,:].to(original.device).to(original.dtype)
|
|
|
|
ret.append(original[i] * (1.0 - blurred_mask[0][0][:,:,None]) + result[0] * blurred_mask[0][0][:,:,None])
|
|
|
|
return (torch.stack(ret), torch.stack(blurred), )
|
|
|
|
|
|
class CutForInpaint:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{
|
|
"image": ("IMAGE",),
|
|
"mask": ("MASK",),
|
|
"width": ("INT", {"default": 512, "min": 64, "max": 2048}),
|
|
"height": ("INT", {"default": 512, "min": 64, "max": 2048}),
|
|
},
|
|
}
|
|
|
|
CATEGORY = "inpaint"
|
|
RETURN_TYPES = ("IMAGE","MASK","VECTOR",)
|
|
RETURN_NAMES = ("image","mask","origin",)
|
|
|
|
FUNCTION = "cut_for_inpaint"
|
|
|
|
def cut_for_inpaint(self, image: torch.Tensor, mask: torch.Tensor, width: int, height: int):
|
|
|
|
image, mask = check_image_mask(image, mask, 'BrushNet')
|
|
|
|
ret = []
|
|
msk = []
|
|
org = []
|
|
for i in range(image.shape[0]):
|
|
x0, y0, w, h = cut_with_mask(mask[i], width, height)
|
|
ret.append((image[i][y0:y0+h,x0:x0+w,:]))
|
|
msk.append((mask[i][y0:y0+h,x0:x0+w]))
|
|
org.append(torch.IntTensor([x0,y0]))
|
|
|
|
return (torch.stack(ret), torch.stack(msk), torch.stack(org), )
|
|
|
|
|
|
|
|
|
|
def get_files_with_extension(folder_name, extension=['.safetensors']):
|
|
|
|
try:
|
|
folders = folder_paths.get_folder_paths(folder_name)
|
|
except:
|
|
folders = []
|
|
|
|
if not folders:
|
|
folders = [os.path.join(folder_paths.models_dir, folder_name)]
|
|
if not os.path.isdir(folders[0]):
|
|
folders = [os.path.join(folder_paths.base_path, folder_name)]
|
|
if not os.path.isdir(folders[0]):
|
|
return {}
|
|
|
|
filtered_folders = []
|
|
for x in folders:
|
|
if not os.path.isdir(x):
|
|
continue
|
|
the_same = False
|
|
for y in filtered_folders:
|
|
if os.path.samefile(x, y):
|
|
the_same = True
|
|
break
|
|
if not the_same:
|
|
filtered_folders.append(x)
|
|
|
|
if not filtered_folders:
|
|
return {}
|
|
|
|
output = {}
|
|
for x in filtered_folders:
|
|
files, folders_all = folder_paths.recursive_search(x, excluded_dir_names=[".git"])
|
|
filtered_files = folder_paths.filter_files_extensions(files, extension)
|
|
|
|
for f in filtered_files:
|
|
output[f] = x
|
|
|
|
return output
|
|
|
|
|
|
|
|
def brushnet_blocks(sd):
|
|
brushnet_down_block = 0
|
|
brushnet_mid_block = 0
|
|
brushnet_up_block = 0
|
|
for key in sd:
|
|
if 'brushnet_down_block' in key:
|
|
brushnet_down_block += 1
|
|
if 'brushnet_mid_block' in key:
|
|
brushnet_mid_block += 1
|
|
if 'brushnet_up_block' in key:
|
|
brushnet_up_block += 1
|
|
return (brushnet_down_block, brushnet_mid_block, brushnet_up_block, len(sd))
|
|
|
|
|
|
|
|
def check_compatibilty(model, brushnet):
|
|
is_SDXL = False
|
|
is_PP = False
|
|
if isinstance(model.model.model_config, comfy.supported_models.SD15):
|
|
print('Base model type: SD1.5')
|
|
is_SDXL = False
|
|
if brushnet["SDXL"]:
|
|
raise Exception("Base model is SD15, but BrushNet is SDXL type")
|
|
if brushnet["PP"]:
|
|
is_PP = True
|
|
elif isinstance(model.model.model_config, comfy.supported_models.SDXL):
|
|
print('Base model type: SDXL')
|
|
is_SDXL = True
|
|
if not brushnet["SDXL"]:
|
|
raise Exception("Base model is SDXL, but BrushNet is SD15 type")
|
|
else:
|
|
print('Base model type: ', type(model.model.model_config))
|
|
raise Exception("Unsupported model type: " + str(type(model.model.model_config)))
|
|
|
|
return (is_SDXL, is_PP)
|
|
|
|
|
|
def check_image_mask(image, mask, name):
|
|
if len(image.shape) < 4:
|
|
|
|
image = image[None,:,:,:]
|
|
|
|
if len(mask.shape) > 3:
|
|
|
|
|
|
mask = (mask[:,:,:,0])[:,:,:]
|
|
elif len(mask.shape) < 3:
|
|
|
|
mask = mask[None,:,:]
|
|
|
|
if image.shape[0] > mask.shape[0]:
|
|
print(name, "gets batch of images (%d) but only %d masks" % (image.shape[0], mask.shape[0]))
|
|
if mask.shape[0] == 1:
|
|
print(name, "will copy the mask to fill batch")
|
|
mask = torch.cat([mask] * image.shape[0], dim=0)
|
|
else:
|
|
print(name, "will add empty masks to fill batch")
|
|
empty_mask = torch.zeros([image.shape[0] - mask.shape[0], mask.shape[1], mask.shape[2]])
|
|
mask = torch.cat([mask, empty_mask], dim=0)
|
|
elif image.shape[0] < mask.shape[0]:
|
|
print(name, "gets batch of images (%d) but too many (%d) masks" % (image.shape[0], mask.shape[0]))
|
|
mask = mask[:image.shape[0],:,:]
|
|
|
|
return (image, mask)
|
|
|
|
|
|
|
|
def prepare_image(image, mask):
|
|
|
|
image, mask = check_image_mask(image, mask, 'BrushNet')
|
|
|
|
print("BrushNet image.shape =", image.shape, "mask.shape =", mask.shape)
|
|
|
|
if mask.shape[2] != image.shape[2] or mask.shape[1] != image.shape[1]:
|
|
raise Exception("Image and mask should be the same size")
|
|
|
|
|
|
mask = mask.round()
|
|
|
|
masked_image = image * (1.0 - mask[:,:,:,None])
|
|
|
|
return (masked_image, mask)
|
|
|
|
|
|
|
|
def cut_with_mask(mask, width, height):
|
|
iy, ix = (mask == 1).nonzero(as_tuple=True)
|
|
|
|
h0, w0 = mask.shape
|
|
|
|
if iy.numel() == 0:
|
|
x_c = w0 / 2.0
|
|
y_c = h0 / 2.0
|
|
else:
|
|
x_min = ix.min().item()
|
|
x_max = ix.max().item()
|
|
y_min = iy.min().item()
|
|
y_max = iy.max().item()
|
|
|
|
if x_max - x_min > width or y_max - y_min > height:
|
|
raise Exception("Masked area is bigger than provided dimensions")
|
|
|
|
x_c = (x_min + x_max) / 2.0
|
|
y_c = (y_min + y_max) / 2.0
|
|
|
|
width2 = width / 2.0
|
|
height2 = height / 2.0
|
|
|
|
if w0 <= width:
|
|
x0 = 0
|
|
w = w0
|
|
else:
|
|
x0 = max(0, x_c - width2)
|
|
w = width
|
|
if x0 + width > w0:
|
|
x0 = w0 - width
|
|
|
|
if h0 <= height:
|
|
y0 = 0
|
|
h = h0
|
|
else:
|
|
y0 = max(0, y_c - height2)
|
|
h = height
|
|
if y0 + height > h0:
|
|
y0 = h0 - height
|
|
|
|
return (int(x0), int(y0), int(w), int(h))
|
|
|
|
|
|
|
|
@torch.inference_mode()
|
|
def get_image_latents(masked_image, mask, vae, scaling_factor):
|
|
processed_image = masked_image.to(vae.device)
|
|
image_latents = vae.encode(processed_image[:,:,:,:3]) * scaling_factor
|
|
processed_mask = 1. - mask[:,None,:,:]
|
|
interpolated_mask = torch.nn.functional.interpolate(
|
|
processed_mask,
|
|
size=(
|
|
image_latents.shape[-2],
|
|
image_latents.shape[-1]
|
|
)
|
|
)
|
|
interpolated_mask = interpolated_mask.to(image_latents.device)
|
|
|
|
conditioning_latents = [image_latents, interpolated_mask]
|
|
|
|
print('BrushNet CL: image_latents shape =', image_latents.shape, 'interpolated_mask shape =', interpolated_mask.shape)
|
|
|
|
return conditioning_latents
|
|
|
|
|
|
|
|
@torch.inference_mode()
|
|
def brushnet_inference(x, timesteps, transformer_options, debug):
|
|
if 'model_patch' not in transformer_options:
|
|
print('BrushNet inference: there is no model_patch key in transformer_options')
|
|
return ([], 0, [])
|
|
mp = transformer_options['model_patch']
|
|
if 'brushnet' not in mp:
|
|
print('BrushNet inference: there is no brushnet key in mdel_patch')
|
|
return ([], 0, [])
|
|
bo = mp['brushnet']
|
|
if 'model' not in bo:
|
|
print('BrushNet inference: there is no model key in brushnet')
|
|
return ([], 0, [])
|
|
brushnet = bo['model']
|
|
if not (isinstance(brushnet, BrushNetModel) or isinstance(brushnet, PowerPaintModel)):
|
|
print('BrushNet model is not a BrushNetModel class')
|
|
return ([], 0, [])
|
|
|
|
torch_dtype = bo['dtype']
|
|
cl_list = bo['latents']
|
|
brushnet_conditioning_scale, control_guidance_start, control_guidance_end = bo['controls']
|
|
pe = bo['prompt_embeds']
|
|
npe = bo['negative_prompt_embeds']
|
|
ppe, nppe, time_ids = bo['add_embeds']
|
|
|
|
|
|
do_classifier_free_guidance = len(transformer_options['cond_or_uncond']) > 1
|
|
|
|
x = x.detach().clone()
|
|
x = x.to(torch_dtype).to(brushnet.device)
|
|
|
|
timesteps = timesteps.detach().clone()
|
|
timesteps = timesteps.to(torch_dtype).to(brushnet.device)
|
|
|
|
total_steps = mp['total_steps']
|
|
step = mp['step']
|
|
|
|
added_cond_kwargs = {}
|
|
|
|
if do_classifier_free_guidance and step == 0:
|
|
print('BrushNet inference: do_classifier_free_guidance is True')
|
|
|
|
sub_idx = None
|
|
if 'ad_params' in transformer_options and 'sub_idxs' in transformer_options['ad_params']:
|
|
sub_idx = transformer_options['ad_params']['sub_idxs']
|
|
|
|
|
|
batch = cl_list[0].shape[0]
|
|
|
|
latents_incoming = x.shape[0]
|
|
|
|
latents_got = bo['latent_id']
|
|
if step == 0 or batch > 1:
|
|
print('BrushNet inference, step = %d: image batch = %d, got %d latents, starting from %d' \
|
|
% (step, batch, latents_incoming, latents_got))
|
|
|
|
image_latents = []
|
|
masks = []
|
|
prompt_embeds = []
|
|
negative_prompt_embeds = []
|
|
pooled_prompt_embeds = []
|
|
negative_pooled_prompt_embeds = []
|
|
if sub_idx:
|
|
|
|
if step == 0:
|
|
print('BrushNet inference: AnimateDiff indexes detected and applied')
|
|
|
|
batch = len(sub_idx)
|
|
|
|
if do_classifier_free_guidance:
|
|
for i in sub_idx:
|
|
image_latents.append(cl_list[0][i][None,:,:,:])
|
|
masks.append(cl_list[1][i][None,:,:,:])
|
|
prompt_embeds.append(pe)
|
|
negative_prompt_embeds.append(npe)
|
|
pooled_prompt_embeds.append(ppe)
|
|
negative_pooled_prompt_embeds.append(nppe)
|
|
for i in sub_idx:
|
|
image_latents.append(cl_list[0][i][None,:,:,:])
|
|
masks.append(cl_list[1][i][None,:,:,:])
|
|
else:
|
|
for i in sub_idx:
|
|
image_latents.append(cl_list[0][i][None,:,:,:])
|
|
masks.append(cl_list[1][i][None,:,:,:])
|
|
prompt_embeds.append(pe)
|
|
pooled_prompt_embeds.append(ppe)
|
|
else:
|
|
|
|
continue_batch = True
|
|
for i in range(latents_incoming):
|
|
number = latents_got + i
|
|
if number < batch:
|
|
|
|
image_latents.append(cl_list[0][number][None,:,:,:])
|
|
masks.append(cl_list[1][number][None,:,:,:])
|
|
prompt_embeds.append(pe)
|
|
pooled_prompt_embeds.append(ppe)
|
|
elif do_classifier_free_guidance and number < batch * 2:
|
|
|
|
image_latents.append(cl_list[0][number-batch][None,:,:,:])
|
|
masks.append(cl_list[1][number-batch][None,:,:,:])
|
|
negative_prompt_embeds.append(npe)
|
|
negative_pooled_prompt_embeds.append(nppe)
|
|
else:
|
|
|
|
image_latents.append(cl_list[0][0][None,:,:,:])
|
|
masks.append(cl_list[1][0][None,:,:,:])
|
|
prompt_embeds.append(pe)
|
|
pooled_prompt_embeds.append(ppe)
|
|
latents_got = -i
|
|
continue_batch = False
|
|
|
|
if continue_batch:
|
|
|
|
if do_classifier_free_guidance:
|
|
if number < batch * 2 - 1:
|
|
bo['latent_id'] = number + 1
|
|
else:
|
|
bo['latent_id'] = 0
|
|
else:
|
|
if number < batch - 1:
|
|
bo['latent_id'] = number + 1
|
|
else:
|
|
bo['latent_id'] = 0
|
|
else:
|
|
bo['latent_id'] = 0
|
|
|
|
cl = []
|
|
for il, m in zip(image_latents, masks):
|
|
cl.append(torch.concat([il, m], dim=1))
|
|
cl2apply = torch.concat(cl, dim=0)
|
|
|
|
conditioning_latents = cl2apply.to(torch_dtype).to(brushnet.device)
|
|
|
|
prompt_embeds.extend(negative_prompt_embeds)
|
|
prompt_embeds = torch.concat(prompt_embeds, dim=0).to(torch_dtype).to(brushnet.device)
|
|
|
|
if ppe is not None:
|
|
added_cond_kwargs = {}
|
|
added_cond_kwargs['time_ids'] = torch.concat([time_ids] * latents_incoming, dim = 0).to(torch_dtype).to(brushnet.device)
|
|
|
|
pooled_prompt_embeds.extend(negative_pooled_prompt_embeds)
|
|
pooled_prompt_embeds = torch.concat(pooled_prompt_embeds, dim=0).to(torch_dtype).to(brushnet.device)
|
|
added_cond_kwargs['text_embeds'] = pooled_prompt_embeds
|
|
else:
|
|
added_cond_kwargs = None
|
|
|
|
if x.shape[2] != conditioning_latents.shape[2] or x.shape[3] != conditioning_latents.shape[3]:
|
|
if step == 0:
|
|
print('BrushNet inference: image', conditioning_latents.shape, 'and latent', x.shape, 'have different size, resizing image')
|
|
conditioning_latents = torch.nn.functional.interpolate(
|
|
conditioning_latents, size=(
|
|
x.shape[2],
|
|
x.shape[3],
|
|
), mode='bicubic',
|
|
).to(torch_dtype).to(brushnet.device)
|
|
|
|
if step == 0:
|
|
print('BrushNet inference: sample', x.shape, ', CL', conditioning_latents.shape, 'dtype', torch_dtype)
|
|
|
|
if debug: print('BrushNet: step =', step)
|
|
|
|
if step < control_guidance_start or step > control_guidance_end:
|
|
cond_scale = 0.0
|
|
else:
|
|
cond_scale = brushnet_conditioning_scale
|
|
|
|
return brushnet(x,
|
|
encoder_hidden_states=prompt_embeds,
|
|
brushnet_cond=conditioning_latents,
|
|
timestep = timesteps,
|
|
conditioning_scale=cond_scale,
|
|
guess_mode=False,
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
return_dict=False,
|
|
debug=debug,
|
|
)
|
|
|
|
|
|
|
|
def add_brushnet_patch(model, brushnet, torch_dtype, conditioning_latents,
|
|
controls,
|
|
prompt_embeds, negative_prompt_embeds,
|
|
pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids,
|
|
debug):
|
|
|
|
is_SDXL = isinstance(model.model.model_config, comfy.supported_models.SDXL)
|
|
|
|
if is_SDXL:
|
|
input_blocks = [[0, comfy.ops.disable_weight_init.Conv2d],
|
|
[1, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
|
|
[2, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
|
|
[3, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
|
|
[4, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[5, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[6, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
|
|
[7, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[8, comfy.ldm.modules.attention.SpatialTransformer]]
|
|
middle_block = [0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]
|
|
output_blocks = [[0, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[1, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[2, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[2, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
|
|
[3, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[4, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[5, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[5, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
|
|
[6, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
|
|
[7, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
|
|
[8, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]]
|
|
else:
|
|
input_blocks = [[0, comfy.ops.disable_weight_init.Conv2d],
|
|
[1, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[2, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[3, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
|
|
[4, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[5, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[6, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
|
|
[7, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[8, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[9, comfy.ldm.modules.diffusionmodules.openaimodel.Downsample],
|
|
[10, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
|
|
[11, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]]
|
|
middle_block = [0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock]
|
|
output_blocks = [[0, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
|
|
[1, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
|
|
[2, comfy.ldm.modules.diffusionmodules.openaimodel.ResBlock],
|
|
[2, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
|
|
[3, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[4, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[5, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[5, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
|
|
[6, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[7, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[8, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[8, comfy.ldm.modules.diffusionmodules.openaimodel.Upsample],
|
|
[9, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[10, comfy.ldm.modules.attention.SpatialTransformer],
|
|
[11, comfy.ldm.modules.attention.SpatialTransformer]]
|
|
|
|
def last_layer_index(block, tp):
|
|
layer_list = []
|
|
for layer in block:
|
|
layer_list.append(type(layer))
|
|
layer_list.reverse()
|
|
if tp not in layer_list:
|
|
return -1, layer_list.reverse()
|
|
return len(layer_list) - 1 - layer_list.index(tp), layer_list
|
|
|
|
def brushnet_forward(model, x, timesteps, transformer_options, control):
|
|
if 'brushnet' not in transformer_options['model_patch']:
|
|
input_samples = []
|
|
mid_sample = 0
|
|
output_samples = []
|
|
else:
|
|
|
|
input_samples, mid_sample, output_samples = brushnet_inference(x, timesteps, transformer_options, debug)
|
|
|
|
|
|
for i, tp in input_blocks:
|
|
idx, layer_list = last_layer_index(model.input_blocks[i], tp)
|
|
if idx < 0:
|
|
print("BrushNet can't find", tp, "layer in", i,"input block:", layer_list)
|
|
continue
|
|
model.input_blocks[i][idx].add_sample_after = input_samples.pop(0) if input_samples else 0
|
|
|
|
idx, layer_list = last_layer_index(model.middle_block, middle_block[1])
|
|
if idx < 0:
|
|
print("BrushNet can't find", middle_block[1], "layer in middle block", layer_list)
|
|
model.middle_block[idx].add_sample_after = mid_sample
|
|
|
|
for i, tp in output_blocks:
|
|
idx, layer_list = last_layer_index(model.output_blocks[i], tp)
|
|
if idx < 0:
|
|
print("BrushNet can't find", tp, "layer in", i,"outnput block:", layer_list)
|
|
continue
|
|
model.output_blocks[i][idx].add_sample_after = output_samples.pop(0) if output_samples else 0
|
|
|
|
patch_model_function_wrapper(model, brushnet_forward)
|
|
|
|
to = add_model_patch_option(model)
|
|
mp = to['model_patch']
|
|
if 'brushnet' not in mp:
|
|
mp['brushnet'] = {}
|
|
bo = mp['brushnet']
|
|
|
|
bo['model'] = brushnet
|
|
bo['dtype'] = torch_dtype
|
|
bo['latents'] = conditioning_latents
|
|
bo['controls'] = controls
|
|
bo['prompt_embeds'] = prompt_embeds
|
|
bo['negative_prompt_embeds'] = negative_prompt_embeds
|
|
bo['add_embeds'] = (pooled_prompt_embeds, negative_pooled_prompt_embeds, time_ids)
|
|
bo['latent_id'] = 0
|
|
|
|
|
|
def forward_patched_by_brushnet(self, x, *args, **kwargs):
|
|
h = self.original_forward(x, *args, **kwargs)
|
|
if hasattr(self, 'add_sample_after') and type(self):
|
|
to_add = self.add_sample_after
|
|
if torch.is_tensor(to_add):
|
|
|
|
if h.shape[2] != to_add.shape[2] or h.shape[3] != to_add.shape[3]:
|
|
to_add = torch.nn.functional.interpolate(to_add, size=(h.shape[2], h.shape[3]), mode='bicubic')
|
|
h += to_add.to(h.dtype).to(h.device)
|
|
else:
|
|
h += self.add_sample_after
|
|
self.add_sample_after = 0
|
|
return h
|
|
|
|
for i, block in enumerate(model.model.diffusion_model.input_blocks):
|
|
for j, layer in enumerate(block):
|
|
if not hasattr(layer, 'original_forward'):
|
|
layer.original_forward = layer.forward
|
|
layer.forward = types.MethodType(forward_patched_by_brushnet, layer)
|
|
layer.add_sample_after = 0
|
|
|
|
for j, layer in enumerate(model.model.diffusion_model.middle_block):
|
|
if not hasattr(layer, 'original_forward'):
|
|
layer.original_forward = layer.forward
|
|
layer.forward = types.MethodType(forward_patched_by_brushnet, layer)
|
|
layer.add_sample_after = 0
|
|
|
|
for i, block in enumerate(model.model.diffusion_model.output_blocks):
|
|
for j, layer in enumerate(block):
|
|
if not hasattr(layer, 'original_forward'):
|
|
layer.original_forward = layer.forward
|
|
layer.forward = types.MethodType(forward_patched_by_brushnet, layer)
|
|
layer.add_sample_after = 0
|
|
|