|
import torch
|
|
import math
|
|
import torch.nn.functional as F
|
|
from comfy.ldm.modules.attention import optimized_attention
|
|
from .utils import tensor_to_size
|
|
|
|
class Attn2Replace:
|
|
def __init__(self, callback=None, **kwargs):
|
|
self.callback = [callback]
|
|
self.kwargs = [kwargs]
|
|
|
|
def add(self, callback, **kwargs):
|
|
self.callback.append(callback)
|
|
self.kwargs.append(kwargs)
|
|
|
|
for key, value in kwargs.items():
|
|
setattr(self, key, value)
|
|
|
|
def __call__(self, q, k, v, extra_options):
|
|
dtype = q.dtype
|
|
out = optimized_attention(q, k, v, extra_options["n_heads"])
|
|
sigma = extra_options["sigmas"].detach().cpu()[0].item() if 'sigmas' in extra_options else 999999999.9
|
|
|
|
for i, callback in enumerate(self.callback):
|
|
if sigma <= self.kwargs[i]["sigma_start"] and sigma >= self.kwargs[i]["sigma_end"]:
|
|
out = out + callback(out, q, k, v, extra_options, **self.kwargs[i])
|
|
|
|
return out.to(dtype=dtype)
|
|
|
|
def ipadapter_attention(out, q, k, v, extra_options, module_key='', ipadapter=None, weight=1.0, cond=None, cond_alt=None, uncond=None, weight_type="linear", mask=None, sigma_start=0.0, sigma_end=1.0, unfold_batch=False, embeds_scaling='V only', **kwargs):
|
|
dtype = q.dtype
|
|
cond_or_uncond = extra_options["cond_or_uncond"]
|
|
block_type = extra_options["block"][0]
|
|
|
|
t_idx = extra_options["transformer_index"]
|
|
layers = 11 if '101_to_k_ip' in ipadapter.ip_layers.to_kvs else 16
|
|
k_key = module_key + "_to_k_ip"
|
|
v_key = module_key + "_to_v_ip"
|
|
|
|
|
|
ad_params = extra_options['ad_params'] if "ad_params" in extra_options else None
|
|
|
|
b = q.shape[0]
|
|
seq_len = q.shape[1]
|
|
batch_prompt = b // len(cond_or_uncond)
|
|
_, _, oh, ow = extra_options["original_shape"]
|
|
|
|
if weight_type == 'ease in':
|
|
weight = weight * (0.05 + 0.95 * (1 - t_idx / layers))
|
|
elif weight_type == 'ease out':
|
|
weight = weight * (0.05 + 0.95 * (t_idx / layers))
|
|
elif weight_type == 'ease in-out':
|
|
weight = weight * (0.05 + 0.95 * (1 - abs(t_idx - (layers/2)) / (layers/2)))
|
|
elif weight_type == 'reverse in-out':
|
|
weight = weight * (0.05 + 0.95 * (abs(t_idx - (layers/2)) / (layers/2)))
|
|
elif weight_type == 'weak input' and block_type == 'input':
|
|
weight = weight * 0.2
|
|
elif weight_type == 'weak middle' and block_type == 'middle':
|
|
weight = weight * 0.2
|
|
elif weight_type == 'weak output' and block_type == 'output':
|
|
weight = weight * 0.2
|
|
elif weight_type == 'strong middle' and (block_type == 'input' or block_type == 'output'):
|
|
weight = weight * 0.2
|
|
elif isinstance(weight, dict):
|
|
if t_idx not in weight:
|
|
return 0
|
|
|
|
if weight_type == "style transfer precise":
|
|
if layers == 11 and t_idx == 3:
|
|
uncond = cond
|
|
cond = cond * 0
|
|
elif layers == 16 and (t_idx == 4 or t_idx == 5):
|
|
uncond = cond
|
|
cond = cond * 0
|
|
elif weight_type == "composition precise":
|
|
if layers == 11 and t_idx != 3:
|
|
uncond = cond
|
|
cond = cond * 0
|
|
elif layers == 16 and (t_idx != 4 and t_idx != 5):
|
|
uncond = cond
|
|
cond = cond * 0
|
|
|
|
weight = weight[t_idx]
|
|
|
|
if cond_alt is not None and t_idx in cond_alt:
|
|
cond = cond_alt[t_idx]
|
|
del cond_alt
|
|
|
|
if unfold_batch:
|
|
|
|
if ad_params is not None and ad_params["sub_idxs"] is not None:
|
|
if isinstance(weight, torch.Tensor):
|
|
weight = tensor_to_size(weight, ad_params["full_length"])
|
|
weight = torch.Tensor(weight[ad_params["sub_idxs"]])
|
|
if torch.all(weight == 0):
|
|
return 0
|
|
weight = weight.repeat(len(cond_or_uncond), 1, 1)
|
|
elif weight == 0:
|
|
return 0
|
|
|
|
|
|
if cond.shape[0] >= ad_params["full_length"]:
|
|
cond = torch.Tensor(cond[ad_params["sub_idxs"]])
|
|
uncond = torch.Tensor(uncond[ad_params["sub_idxs"]])
|
|
|
|
else:
|
|
cond = tensor_to_size(cond, ad_params["full_length"])
|
|
uncond = tensor_to_size(uncond, ad_params["full_length"])
|
|
cond = cond[ad_params["sub_idxs"]]
|
|
uncond = uncond[ad_params["sub_idxs"]]
|
|
else:
|
|
if isinstance(weight, torch.Tensor):
|
|
weight = tensor_to_size(weight, batch_prompt)
|
|
if torch.all(weight == 0):
|
|
return 0
|
|
weight = weight.repeat(len(cond_or_uncond), 1, 1)
|
|
elif weight == 0:
|
|
return 0
|
|
|
|
cond = tensor_to_size(cond, batch_prompt)
|
|
uncond = tensor_to_size(uncond, batch_prompt)
|
|
|
|
k_cond = ipadapter.ip_layers.to_kvs[k_key](cond)
|
|
k_uncond = ipadapter.ip_layers.to_kvs[k_key](uncond)
|
|
v_cond = ipadapter.ip_layers.to_kvs[v_key](cond)
|
|
v_uncond = ipadapter.ip_layers.to_kvs[v_key](uncond)
|
|
else:
|
|
|
|
if isinstance(weight, torch.Tensor):
|
|
weight = tensor_to_size(weight, batch_prompt)
|
|
if torch.all(weight == 0):
|
|
return 0
|
|
weight = weight.repeat(len(cond_or_uncond), 1, 1)
|
|
elif weight == 0:
|
|
return 0
|
|
|
|
k_cond = ipadapter.ip_layers.to_kvs[k_key](cond).repeat(batch_prompt, 1, 1)
|
|
k_uncond = ipadapter.ip_layers.to_kvs[k_key](uncond).repeat(batch_prompt, 1, 1)
|
|
v_cond = ipadapter.ip_layers.to_kvs[v_key](cond).repeat(batch_prompt, 1, 1)
|
|
v_uncond = ipadapter.ip_layers.to_kvs[v_key](uncond).repeat(batch_prompt, 1, 1)
|
|
|
|
if len(cond_or_uncond) == 3:
|
|
ip_k = torch.cat([(k_cond, k_uncond, k_cond)[i] for i in cond_or_uncond], dim=0)
|
|
ip_v = torch.cat([(v_cond, v_uncond, v_cond)[i] for i in cond_or_uncond], dim=0)
|
|
else:
|
|
ip_k = torch.cat([(k_cond, k_uncond)[i] for i in cond_or_uncond], dim=0)
|
|
ip_v = torch.cat([(v_cond, v_uncond)[i] for i in cond_or_uncond], dim=0)
|
|
|
|
if embeds_scaling == 'K+mean(V) w/ C penalty':
|
|
scaling = float(ip_k.shape[2]) / 1280.0
|
|
weight = weight * scaling
|
|
ip_k = ip_k * weight
|
|
ip_v_mean = torch.mean(ip_v, dim=1, keepdim=True)
|
|
ip_v = (ip_v - ip_v_mean) + ip_v_mean * weight
|
|
out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"])
|
|
del ip_v_mean
|
|
elif embeds_scaling == 'K+V w/ C penalty':
|
|
scaling = float(ip_k.shape[2]) / 1280.0
|
|
weight = weight * scaling
|
|
ip_k = ip_k * weight
|
|
ip_v = ip_v * weight
|
|
out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"])
|
|
elif embeds_scaling == 'K+V':
|
|
ip_k = ip_k * weight
|
|
ip_v = ip_v * weight
|
|
out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"])
|
|
else:
|
|
|
|
out_ip = optimized_attention(q, ip_k, ip_v, extra_options["n_heads"])
|
|
out_ip = out_ip * weight
|
|
|
|
if mask is not None:
|
|
mask_h = oh / math.sqrt(oh * ow / seq_len)
|
|
mask_h = int(mask_h) + int((seq_len % int(mask_h)) != 0)
|
|
mask_w = seq_len // mask_h
|
|
|
|
|
|
if (mask.shape[0] > 1 and ad_params is not None and ad_params["sub_idxs"] is not None):
|
|
|
|
if mask.shape[0] >= ad_params["full_length"]:
|
|
mask = torch.Tensor(mask[ad_params["sub_idxs"]])
|
|
mask = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bilinear").squeeze(1)
|
|
else:
|
|
mask = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bilinear").squeeze(1)
|
|
mask = tensor_to_size(mask, ad_params["full_length"])
|
|
mask = mask[ad_params["sub_idxs"]]
|
|
else:
|
|
mask = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bilinear").squeeze(1)
|
|
mask = tensor_to_size(mask, batch_prompt)
|
|
|
|
mask = mask.repeat(len(cond_or_uncond), 1, 1)
|
|
mask = mask.view(mask.shape[0], -1, 1).repeat(1, 1, out.shape[2])
|
|
|
|
|
|
mask_len = mask_h * mask_w
|
|
if mask_len < seq_len:
|
|
pad_len = seq_len - mask_len
|
|
pad1 = pad_len // 2
|
|
pad2 = pad_len - pad1
|
|
mask = F.pad(mask, (0, 0, pad1, pad2), value=0.0)
|
|
elif mask_len > seq_len:
|
|
crop_start = (mask_len - seq_len) // 2
|
|
mask = mask[:, crop_start:crop_start+seq_len, :]
|
|
|
|
out_ip = out_ip * mask
|
|
|
|
|
|
|
|
return out_ip.to(dtype=dtype)
|
|
|