File size: 33,298 Bytes
3d5837a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
import os
import re
import json
import shutil
import yaml

from PIL import Image
import nodes
import torch

import folder_paths
import comfy
import traceback
import random

from server import PromptServer
from .libs import utils, common
from .backend_support import CheckpointLoaderSimpleShared

prompt_builder_preset = {}


resource_path = os.path.join(os.path.dirname(__file__), "..", "resources")
resource_path = os.path.abspath(resource_path)

prompts_path = os.path.join(os.path.dirname(__file__), "..", "prompts")
prompts_path = os.path.abspath(prompts_path)


try:
    pb_yaml_path = os.path.join(resource_path, 'prompt-builder.yaml')
    pb_yaml_path_example = os.path.join(resource_path, 'prompt-builder.yaml.example')

    if not os.path.exists(pb_yaml_path):
        shutil.copy(pb_yaml_path_example, pb_yaml_path)

    with open(pb_yaml_path, 'r', encoding="utf-8") as f:
        prompt_builder_preset = yaml.load(f, Loader=yaml.FullLoader)
except Exception as e:
    print(f"[Inspire Pack] Failed to load 'prompt-builder.yaml'")


class LoadPromptsFromDir:
    @classmethod
    def INPUT_TYPES(cls):
        global prompts_path
        try:
            prompt_dirs = [d for d in os.listdir(prompts_path) if os.path.isdir(os.path.join(prompts_path, d))]
        except Exception:
            prompt_dirs = []

        return {"required": {"prompt_dir": (prompt_dirs,)}}

    RETURN_TYPES = ("ZIPPED_PROMPT",)
    OUTPUT_IS_LIST = (True,)

    FUNCTION = "doit"

    CATEGORY = "InspirePack/Prompt"

    @staticmethod
    def doit(prompt_dir):
        global prompts_path
        prompt_dir = os.path.join(prompts_path, prompt_dir)
        files = [f for f in os.listdir(prompt_dir) if f.endswith(".txt")]
        files.sort()

        prompts = []
        for file_name in files:
            print(f"file_name: {file_name}")
            try:
                with open(os.path.join(prompt_dir, file_name), "r", encoding="utf-8") as file:
                    prompt_data = file.read()
                    prompt_list = re.split(r'\n\s*-+\s*\n', prompt_data)

                    for prompt in prompt_list:
                        pattern = r"positive:(.*?)(?:\n*|$)negative:(.*)"
                        matches = re.search(pattern, prompt, re.DOTALL)

                        if matches:
                            positive_text = matches.group(1).strip()
                            negative_text = matches.group(2).strip()
                            result_tuple = (positive_text, negative_text, file_name)
                            prompts.append(result_tuple)
                        else:
                            print(f"[WARN] LoadPromptsFromDir: invalid prompt format in '{file_name}'")
            except Exception as e:
                print(f"[ERROR] LoadPromptsFromDir: an error occurred while processing '{file_name}': {str(e)}")

        return (prompts, )


class LoadPromptsFromFile:
    @classmethod
    def INPUT_TYPES(cls):
        global prompts_path
        try:
            prompt_files = []
            for root, dirs, files in os.walk(prompts_path):
                for file in files:
                    if file.endswith(".txt"):
                        file_path = os.path.join(root, file)
                        rel_path = os.path.relpath(file_path, prompts_path)
                        prompt_files.append(rel_path)
        except Exception:
            prompt_files = []

        return {"required": {"prompt_file": (prompt_files,)},
                "optional": {"text_data_opt": ("STRING", {"defaultInput": True})}}

    RETURN_TYPES = ("ZIPPED_PROMPT",)
    OUTPUT_IS_LIST = (True,)

    FUNCTION = "doit"

    CATEGORY = "InspirePack/Prompt"

    @staticmethod
    def doit(prompt_file, text_data_opt=None):
        prompt_path = os.path.join(prompts_path, prompt_file)

        prompts = []
        try:
            if not text_data_opt:
                with open(prompt_path, "r", encoding="utf-8") as file:
                    prompt_data = file.read()
            else:
                prompt_data = text_data_opt

            prompt_list = re.split(r'\n\s*-+\s*\n', prompt_data)

            pattern = r"positive:(.*?)(?:\n*|$)negative:(.*)"

            for prompt in prompt_list:
                matches = re.search(pattern, prompt, re.DOTALL)

                if matches:
                    positive_text = matches.group(1).strip()
                    negative_text = matches.group(2).strip()
                    result_tuple = (positive_text, negative_text, prompt_file)
                    prompts.append(result_tuple)
                else:
                    print(f"[WARN] LoadPromptsFromFile: invalid prompt format in '{prompt_file}'")
        except Exception as e:
            print(f"[ERROR] LoadPromptsFromFile: an error occurred while processing '{prompt_file}': {str(e)}")

        return (prompts, )


class LoadSinglePromptFromFile:
    @classmethod
    def INPUT_TYPES(cls):
        global prompts_path
        try:
            prompt_files = []
            for root, dirs, files in os.walk(prompts_path):
                for file in files:
                    if file.endswith(".txt"):
                        file_path = os.path.join(root, file)
                        rel_path = os.path.relpath(file_path, prompts_path)
                        prompt_files.append(rel_path)
        except Exception:
            prompt_files = []

        return {"required": {
                    "prompt_file": (prompt_files,),
                    "index": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    },
                "optional": {"text_data_opt": ("STRING", {"defaultInput": True})}
                }

    RETURN_TYPES = ("ZIPPED_PROMPT",)
    OUTPUT_IS_LIST = (True,)

    FUNCTION = "doit"

    CATEGORY = "InspirePack/Prompt"

    @staticmethod
    def doit(prompt_file, index, text_data_opt=None):
        prompt_path = os.path.join(prompts_path, prompt_file)

        prompts = []
        try:
            if not text_data_opt:
                with open(prompt_path, "r", encoding="utf-8") as file:
                    prompt_data = file.read()
            else:
                prompt_data = text_data_opt
                
            prompt_list = re.split(r'\n\s*-+\s*\n', prompt_data)
            try:
                prompt = prompt_list[index]
            except Exception:
                prompt = prompt_list[-1]

            pattern = r"positive:(.*?)(?:\n*|$)negative:(.*)"
            matches = re.search(pattern, prompt, re.DOTALL)

            if matches:
                positive_text = matches.group(1).strip()
                negative_text = matches.group(2).strip()
                result_tuple = (positive_text, negative_text, prompt_file)
                prompts.append(result_tuple)
            else:
                print(f"[WARN] LoadSinglePromptFromFile: invalid prompt format in '{prompt_file}'")
        except Exception as e:
            print(f"[ERROR] LoadSinglePromptFromFile: an error occurred while processing '{prompt_file}': {str(e)}")

        return (prompts, )


class UnzipPrompt:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"zipped_prompt": ("ZIPPED_PROMPT",), }}

    RETURN_TYPES = ("STRING", "STRING", "STRING")
    RETURN_NAMES = ("positive", "negative", "name")

    FUNCTION = "doit"

    CATEGORY = "InspirePack/Prompt"

    def doit(self, zipped_prompt):
        return zipped_prompt


class ZipPrompt:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "positive": ("STRING", {"forceInput": True, "multiline": True}),
                    "negative": ("STRING", {"forceInput": True, "multiline": True}),
                    },
                "optional": {
                    "name_opt": ("STRING", {"forceInput": True, "multiline": False})
                    }
                }

    RETURN_TYPES = ("ZIPPED_PROMPT",)

    FUNCTION = "doit"

    CATEGORY = "InspirePack/Prompt"

    def doit(self, positive, negative, name_opt=""):
        return ((positive, negative, name_opt), )


prompt_blacklist = set(['filename_prefix'])


class PromptExtractor:
    @classmethod
    def INPUT_TYPES(s):
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
        return {"required": {
                    "image": (sorted(files), {"image_upload": True}),
                    "positive_id": ("STRING", {}),
                    "negative_id": ("STRING", {}),
                    "info": ("STRING", {"multiline": True})
                    },
                "hidden": {"unique_id": "UNIQUE_ID"},
                }

    CATEGORY = "InspirePack/Prompt"

    RETURN_TYPES = ("STRING", "STRING")
    RETURN_NAMES = ("positive", "negative")
    FUNCTION = "doit"

    OUTPUT_NODE = True

    def doit(self, image, positive_id, negative_id, info, unique_id):
        image_path = folder_paths.get_annotated_filepath(image)
        info = Image.open(image_path).info

        positive = ""
        negative = ""
        text = ""
        prompt_dicts = {}
        node_inputs = {}

        def get_node_inputs(x):
            if x in node_inputs:
                return node_inputs[x]
            else:
                node_inputs[x] = None

                obj = nodes.NODE_CLASS_MAPPINGS.get(x, None)
                if obj is not None:
                    input_types = obj.INPUT_TYPES()
                    node_inputs[x] = input_types
                    return input_types
                else:
                    return None

        if isinstance(info, dict) and 'workflow' in info:
            prompt = json.loads(info['prompt'])
            for k, v in prompt.items():
                input_types = get_node_inputs(v['class_type'])
                if input_types is not None:
                    inputs = input_types['required'].copy()
                    if 'optional' in input_types:
                        inputs.update(input_types['optional'])

                    for name, value in inputs.items():
                        if name in prompt_blacklist:
                            continue

                        if value[0] == 'STRING' and name in v['inputs']:
                            prompt_dicts[f"{k}.{name.strip()}"] = (v['class_type'], v['inputs'][name])

            for k, v in prompt_dicts.items():
                text += f"{k} [{v[0]}] ==> {v[1]}\n"

            positive = prompt_dicts.get(positive_id.strip(), "")
            negative = prompt_dicts.get(negative_id.strip(), "")
        else:
            text = "There is no prompt information within the image."

        PromptServer.instance.send_sync("inspire-node-feedback", {"node_id": unique_id, "widget_name": "info", "type": "text", "data": text})
        return (positive, negative)


class GlobalSeed:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "value": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                "mode": ("BOOLEAN", {"default": True, "label_on": "control_before_generate", "label_off": "control_after_generate"}),
                "action": (["fixed", "increment", "decrement", "randomize",
                            "increment for each node", "decrement for each node", "randomize for each node"], ),
                "last_seed": ("STRING", {"default": ""}),
            }
        }

    RETURN_TYPES = ()
    FUNCTION = "doit"

    CATEGORY = "InspirePack/Prompt"

    OUTPUT_NODE = True

    def doit(self, **kwargs):
        return {}


class GlobalSampler:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                "scheduler": (common.SCHEDULERS, ),
            }
        }

    RETURN_TYPES = ()
    FUNCTION = "doit"

    CATEGORY = "InspirePack/Prompt"

    OUTPUT_NODE = True

    def doit(self, **kwargs):
        return {}


class BindImageListPromptList:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "images": ("IMAGE",),
                "zipped_prompts": ("ZIPPED_PROMPT",),
                "default_positive": ("STRING", {"multiline": True, "placeholder": "default positive"}),
                "default_negative": ("STRING", {"multiline": True, "placeholder": "default negative"}),
            }
        }

    INPUT_IS_LIST = True

    RETURN_TYPES = ("IMAGE", "STRING", "STRING", "STRING")
    RETURN_NAMES = ("image", "positive", "negative", "prompt_label")

    OUTPUT_IS_LIST = (True, True, True,)

    FUNCTION = "doit"

    CATEGORY = "InspirePack/Prompt"

    def doit(self, images, zipped_prompts, default_positive, default_negative):
        positives = []
        negatives = []
        prompt_labels = []

        if len(images) < len(zipped_prompts):
            zipped_prompts = zipped_prompts[:len(images)]

        elif len(images) > len(zipped_prompts):
            lack = len(images) - len(zipped_prompts)
            default_prompt = (default_positive[0], default_negative[0], "default")
            zipped_prompts = zipped_prompts[:]
            for i in range(lack):
                zipped_prompts.append(default_prompt)

        for prompt in zipped_prompts:
            a, b, c = prompt
            positives.append(a)
            negatives.append(b)
            prompt_labels.append(c)

        return (images, positives, negatives, prompt_labels)


class BNK_EncoderWrapper:
    def __init__(self, token_normalization, weight_interpretation):
        self.token_normalization = token_normalization
        self.weight_interpretation = weight_interpretation

    def encode(self, clip, text):
        if 'BNK_CLIPTextEncodeAdvanced' not in nodes.NODE_CLASS_MAPPINGS:
            utils.try_install_custom_node('https://github.com/BlenderNeko/ComfyUI_ADV_CLIP_emb',
                                          "To use 'WildcardEncodeInspire' node, 'ComfyUI_ADV_CLIP_emb' extension is required.")
            raise Exception(f"[ERROR] To use WildcardEncodeInspire, you need to install 'Advanced CLIP Text Encode'")
        return nodes.NODE_CLASS_MAPPINGS['BNK_CLIPTextEncodeAdvanced']().encode(clip, text, self.token_normalization, self.weight_interpretation)


class WildcardEncodeInspire:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                        "model": ("MODEL",),
                        "clip": ("CLIP",),
                        "token_normalization": (["none", "mean", "length", "length+mean"], ),
                        "weight_interpretation": (["comfy", "A1111", "compel", "comfy++", "down_weight"], {'default': 'comfy++'}),
                        "wildcard_text": ("STRING", {"multiline": True, "dynamicPrompts": False, 'placeholder': 'Wildcard Prompt (User Input)'}),
                        "populated_text": ("STRING", {"multiline": True, "dynamicPrompts": False, 'placeholder': 'Populated Prompt (Will be generated automatically)'}),
                        "mode": ("BOOLEAN", {"default": True, "label_on": "Populate", "label_off": "Fixed"}),
                        "Select to add LoRA": (["Select the LoRA to add to the text"] + folder_paths.get_filename_list("loras"), ),
                        "Select to add Wildcard": (["Select the Wildcard to add to the text"],),
                        "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    },
                }

    CATEGORY = "InspirePack/Prompt"

    RETURN_TYPES = ("MODEL", "CLIP", "CONDITIONING", "STRING")
    RETURN_NAMES = ("model", "clip", "conditioning", "populated_text")
    FUNCTION = "doit"

    def doit(self, *args, **kwargs):
        populated = kwargs['populated_text']

        clip_encoder = BNK_EncoderWrapper(kwargs['token_normalization'], kwargs['weight_interpretation'])

        if 'ImpactWildcardEncode' not in nodes.NODE_CLASS_MAPPINGS:
            utils.try_install_custom_node('https://github.com/ltdrdata/ComfyUI-Impact-Pack',
                                          "To use 'Wildcard Encode (Inspire)' node, 'Impact Pack' extension is required.")
            raise Exception(f"[ERROR] To use 'Wildcard Encode (Inspire)', you need to install 'Impact Pack'")

        processed = []
        model, clip, conditioning = nodes.NODE_CLASS_MAPPINGS['ImpactWildcardEncode'].process_with_loras(wildcard_opt=populated, model=kwargs['model'], clip=kwargs['clip'], seed=kwargs['seed'], clip_encoder=clip_encoder, processed=processed)
        return (model, clip, conditioning, processed[0])


class MakeBasicPipe:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                        "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                        "ckpt_key_opt": ("STRING", {"multiline": False, "placeholder": "If empty, use 'ckpt_name' as the key." }),

                        "positive_wildcard_text": ("STRING", {"multiline": True, "dynamicPrompts": False, 'placeholder': 'Positive Prompt (User Input)'}),
                        "negative_wildcard_text": ("STRING", {"multiline": True, "dynamicPrompts": False, 'placeholder': 'Negative Prompt (User Input)'}),

                        "Add selection to": ("BOOLEAN", {"default": True, "label_on": "Positive", "label_off": "Negative"}),
                        "Select to add LoRA": (["Select the LoRA to add to the text"] + folder_paths.get_filename_list("loras"),),
                        "Select to add Wildcard": (["Select the Wildcard to add to the text"],),
                        "wildcard_mode": ("BOOLEAN", {"default": True, "label_on": "Populate", "label_off": "Fixed"}),

                        "positive_populated_text": ("STRING", {"multiline": True, "dynamicPrompts": False, 'placeholder': 'Populated Positive Prompt (Will be generated automatically)'}),
                        "negative_populated_text": ("STRING", {"multiline": True, "dynamicPrompts": False, 'placeholder': 'Populated Negative Prompt (Will be generated automatically)'}),

                        "token_normalization": (["none", "mean", "length", "length+mean"],),
                        "weight_interpretation": (["comfy", "A1111", "compel", "comfy++", "down_weight"], {'default': 'comfy++'}),

                        "stop_at_clip_layer": ("INT", {"default": -2, "min": -24, "max": -1, "step": 1}),
            
                        "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    },
                "optional": {
                        "vae_opt": ("VAE",)
                    },
                }

    CATEGORY = "InspirePack/Prompt"

    RETURN_TYPES = ("BASIC_PIPE", "STRING")
    RETURN_NAMES = ("basic_pipe", "cache_key")
    FUNCTION = "doit"

    def doit(self, **kwargs):
        pos_populated = kwargs['positive_populated_text']
        neg_populated = kwargs['negative_populated_text']

        clip_encoder = BNK_EncoderWrapper(kwargs['token_normalization'], kwargs['weight_interpretation'])

        if 'ImpactWildcardEncode' not in nodes.NODE_CLASS_MAPPINGS:
            utils.try_install_custom_node('https://github.com/ltdrdata/ComfyUI-Impact-Pack',
                                          "To use 'Make Basic Pipe (Inspire)' node, 'Impact Pack' extension is required.")
            raise Exception(f"[ERROR] To use 'Make Basic Pipe (Inspire)', you need to install 'Impact Pack'")

        model, clip, vae, key = CheckpointLoaderSimpleShared().doit(ckpt_name=kwargs['ckpt_name'], key_opt=kwargs['ckpt_key_opt'])
        clip = nodes.CLIPSetLastLayer().set_last_layer(clip, kwargs['stop_at_clip_layer'])[0]
        model, clip, positive = nodes.NODE_CLASS_MAPPINGS['ImpactWildcardEncode'].process_with_loras(wildcard_opt=pos_populated, model=model, clip=clip, clip_encoder=clip_encoder)
        model, clip, negative = nodes.NODE_CLASS_MAPPINGS['ImpactWildcardEncode'].process_with_loras(wildcard_opt=neg_populated, model=model, clip=clip, clip_encoder=clip_encoder)

        if 'vae_opt' in kwargs:
            vae = kwargs['vae_opt']

        basic_pipe = model, clip, vae, positive, negative

        return (basic_pipe, key)


class PromptBuilder:
    @classmethod
    def INPUT_TYPES(s):
        global prompt_builder_preset

        presets = ["#PRESET"]
        return {"required": {
                        "category": (list(prompt_builder_preset.keys()) + ["#PLACEHOLDER"], ),
                        "preset": (presets, ),
                        "text": ("STRING", {"multiline": True}),
                     },
                }

    RETURN_TYPES = ("STRING", )
    FUNCTION = "doit"

    CATEGORY = "InspirePack/Prompt"

    def doit(self, **kwargs):
        return (kwargs['text'],)


class SeedExplorer:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "latent": ("LATENT",),
                "seed_prompt": ("STRING", {"multiline": True, "dynamicPrompts": False, "pysssss.autocomplete": False}),
                "enable_additional": ("BOOLEAN", {"default": True, "label_on": "true", "label_off": "false"}),
                "additional_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                "additional_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                "noise_mode": (["GPU(=A1111)", "CPU"],),
                "initial_batch_seed_mode": (["incremental", "comfy"],),
            },
            "optional":
                {
                    "variation_method": (["linear", "slerp"],),
                    "model": ("model",),
                }
        }

    RETURN_TYPES = ("NOISE",)
    FUNCTION = "doit"

    CATEGORY = "InspirePack/Prompt"

    @staticmethod
    def apply_variation(start_noise, seed_items, noise_device, mask=None, variation_method='linear'):
        noise = start_noise
        for x in seed_items:
            if isinstance(x, str):
                item = x.split(':')
            else:
                item = x

            if len(item) == 2:
                try:
                    variation_seed = int(item[0])
                    variation_strength = float(item[1])

                    noise = utils.apply_variation_noise(noise, noise_device, variation_seed, variation_strength, mask=mask, variation_method=variation_method)
                except Exception:
                    print(f"[ERROR] IGNORED: SeedExplorer failed to processing '{x}'")
                    traceback.print_exc()
        return noise

    @staticmethod
    def doit(latent, seed_prompt, enable_additional, additional_seed, additional_strength, noise_mode,

             initial_batch_seed_mode, variation_method='linear', model=None):
        latent_image = latent["samples"]

        if hasattr(comfy.sample, 'fix_empty_latent_channels') and model is not None:
            latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)

        device = comfy.model_management.get_torch_device()
        noise_device = "cpu" if noise_mode == "CPU" else device

        seed_prompt = seed_prompt.replace("\n", "")
        items = seed_prompt.strip().split(",")

        if items == ['']:
            items = []

        if enable_additional:
            items.append((additional_seed, additional_strength))

        try:
            hd = items[0]
            tl = items[1:]

            if isinstance(hd, tuple):
                hd_seed = int(hd[0])
            else:
                hd_seed = int(hd)

            noise = utils.prepare_noise(latent_image, hd_seed, None, noise_device, initial_batch_seed_mode)
            noise = noise.to(device)
            noise = SeedExplorer.apply_variation(noise, tl, noise_device, variation_method=variation_method)
            noise = noise.cpu()

            return (noise,)

        except Exception:
            print(f"[ERROR] IGNORED: SeedExplorer failed")
            traceback.print_exc()

        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout,
                            device=noise_device)
        return (noise,)


class CompositeNoise:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "destination": ("NOISE",),
                "source": ("NOISE",),
                "mode": (["center", "left-top", "right-top", "left-bottom", "right-bottom", "xy"], ),
                "x": ("INT", {"default": 0, "min": 0, "max": nodes.MAX_RESOLUTION, "step": 8}),
                "y": ("INT", {"default": 0, "min": 0, "max": nodes.MAX_RESOLUTION, "step": 8}),
            },
        }

    RETURN_TYPES = ("NOISE",)
    FUNCTION = "doit"

    CATEGORY = "InspirePack/Prompt"

    def doit(self, destination, source, mode, x, y):
        new_tensor = destination.clone()

        if mode == 'center':
            y1 = (new_tensor.size(2) - source.size(2)) // 2
            x1 = (new_tensor.size(3) - source.size(3)) // 2
        elif mode == 'left-top':
            y1 = 0
            x1 = 0
        elif mode == 'right-top':
            y1 = 0
            x1 = new_tensor.size(2) - source.size(2)
        elif mode == 'left-bottom':
            y1 = new_tensor.size(3) - source.size(3)
            x1 = 0
        elif mode == 'right-bottom':
            y1 = new_tensor.size(3) - source.size(3)
            x1 = new_tensor.size(2) - source.size(2)
        else:  # mode == 'xy':
            x1 = max(0, x)
            y1 = max(0, y)

        # raw coordinates
        y2 = y1 + source.size(2)
        x2 = x1 + source.size(3)

        # bounding for destination
        top = max(0, y1)
        left = max(0, x1)
        bottom = min(new_tensor.size(2), y2)
        right = min(new_tensor.size(3), x2)

        # bounding for source
        left_gap = left - x1
        top_gap = top - y1

        width = right - left
        height = bottom - top

        height = min(height, y1 + source.size(2) - top)
        width = min(width, x1 + source.size(3) - left)

        # composite
        new_tensor[:, :, top:top + height, left:left + width] = source[:, :, top_gap:top_gap + height, left_gap:left_gap + width]

        return (new_tensor,)


list_counter_map = {}


class ListCounter:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "signal": (utils.any_typ,),
                    "base_value": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    },
                "hidden": {"unique_id": "UNIQUE_ID"},
                }

    RETURN_TYPES = ("INT",)
    FUNCTION = "doit"

    CATEGORY = "InspirePack/Util"

    def doit(self, signal, base_value, unique_id):
        if unique_id not in list_counter_map:
            count = 0
        else:
            count = list_counter_map[unique_id]

        list_counter_map[unique_id] = count + 1

        return (count + base_value, )


class CLIPTextEncodeWithWeight:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "text": ("STRING", {"multiline": True}), "clip": ("CLIP", ),
                "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                "add_weight": ("FLOAT", {"default": 0.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                }
            }
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

    CATEGORY = "InspirePack/Util"

    def encode(self, clip, text, strength, add_weight):
        tokens = clip.tokenize(text)

        if add_weight != 0 or strength != 1:
            for v in tokens.values():
                for vv in v:
                    for i in range(0, len(vv)):
                        vv[i] = (vv[i][0], vv[i][1] * strength + add_weight)

        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )


class RandomGeneratorForList:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "signal": (utils.any_typ,),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    },
                "hidden": {"unique_id": "UNIQUE_ID"},
                }

    RETURN_TYPES = (utils.any_typ, "INT",)
    RETURN_NAMES = ("signal", "random_value",)

    FUNCTION = "doit"

    CATEGORY = "InspirePack/Util"

    def doit(self, signal, seed, unique_id):
        if unique_id not in list_counter_map:
            count = 0
        else:
            count = list_counter_map[unique_id]

        list_counter_map[unique_id] = count + 1

        rn = random.Random()
        rn.seed(seed + count)
        new_seed = random.randint(0, 1125899906842624)

        return (signal, new_seed)


class RemoveControlNet:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "doit"

    CATEGORY = "InspirePack/Util"

    def doit(self, conditioning):
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]

            if 'control' in n[1]:
                del n[1]['control']
            if 'control_apply_to_uncond' in n[1]:
                del n[1]['control_apply_to_uncond']
            c.append(n)

        return (c, )


class RemoveControlNetFromRegionalPrompts:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"regional_prompts": ("REGIONAL_PROMPTS", )}}
    RETURN_TYPES = ("REGIONAL_PROMPTS",)
    FUNCTION = "doit"

    CATEGORY = "InspirePack/Util"

    def doit(self, regional_prompts):
        rcn = RemoveControlNet()
        res = []
        for rp in regional_prompts:
            _, _, _, _, positive, negative = rp.sampler.params
            positive, negative = rcn.doit(positive)[0], rcn.doit(negative)[0]
            sampler = rp.sampler.clone_with_conditionings(positive, negative)
            res.append(rp.clone_with_sampler(sampler))
        return (res, )


NODE_CLASS_MAPPINGS = {
    "LoadPromptsFromDir //Inspire": LoadPromptsFromDir,
    "LoadPromptsFromFile //Inspire": LoadPromptsFromFile,
    "LoadSinglePromptFromFile //Inspire": LoadSinglePromptFromFile,
    "UnzipPrompt //Inspire": UnzipPrompt,
    "ZipPrompt //Inspire": ZipPrompt,
    "PromptExtractor //Inspire": PromptExtractor,
    "GlobalSeed //Inspire": GlobalSeed,
    "GlobalSampler //Inspire": GlobalSampler,
    "BindImageListPromptList //Inspire": BindImageListPromptList,
    "WildcardEncode //Inspire": WildcardEncodeInspire,
    "PromptBuilder //Inspire": PromptBuilder,
    "SeedExplorer //Inspire": SeedExplorer,
    "ListCounter //Inspire": ListCounter,
    "CLIPTextEncodeWithWeight //Inspire": CLIPTextEncodeWithWeight,
    "RandomGeneratorForList //Inspire": RandomGeneratorForList,
    "MakeBasicPipe //Inspire": MakeBasicPipe,
    "RemoveControlNet //Inspire": RemoveControlNet,
    "RemoveControlNetFromRegionalPrompts //Inspire": RemoveControlNetFromRegionalPrompts,
    "CompositeNoise //Inspire": CompositeNoise
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "LoadPromptsFromDir //Inspire": "Load Prompts From Dir (Inspire)",
    "LoadPromptsFromFile //Inspire": "Load Prompts From File (Inspire)",
    "LoadSinglePromptFromFile //Inspire": "Load Single Prompt From File (Inspire)",
    "UnzipPrompt //Inspire": "Unzip Prompt (Inspire)",
    "ZipPrompt //Inspire": "Zip Prompt (Inspire)",
    "PromptExtractor //Inspire": "Prompt Extractor (Inspire)",
    "GlobalSeed //Inspire": "Global Seed (Inspire)",
    "GlobalSampler //Inspire": "Global Sampler (Inspire)",
    "BindImageListPromptList //Inspire": "Bind [ImageList, PromptList] (Inspire)",
    "WildcardEncode //Inspire": "Wildcard Encode (Inspire)",
    "PromptBuilder //Inspire": "Prompt Builder (Inspire)",
    "SeedExplorer //Inspire": "Seed Explorer (Inspire)",
    "ListCounter //Inspire": "List Counter (Inspire)",
    "CLIPTextEncodeWithWeight //Inspire": "CLIPTextEncodeWithWeight (Inspire)",
    "RandomGeneratorForList //Inspire": "Random Generator for List (Inspire)",
    "MakeBasicPipe //Inspire": "Make Basic Pipe (Inspire)",
    "RemoveControlNet //Inspire": "Remove ControlNet (Inspire)",
    "RemoveControlNetFromRegionalPrompts //Inspire": "Remove ControlNet [RegionalPrompts] (Inspire)",
    "CompositeNoise //Inspire": "Composite Noise (Inspire)"
}