File size: 22,412 Bytes
3d5837a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import comfy
import torch
from .libs import utils
from einops import rearrange
import random
import math
from .libs import common


class Inspire_RandomNoise:
    def __init__(self, seed, mode, incremental_seed_mode, variation_seed, variation_strength, variation_method="linear"):
        device = comfy.model_management.get_torch_device()
        self.seed = seed
        self.noise_device = "cpu" if mode == "CPU" else device
        self.incremental_seed_mode = incremental_seed_mode
        self.variation_seed = variation_seed
        self.variation_strength = variation_strength
        self.variation_method = variation_method

    def generate_noise(self, input_latent):
        latent_image = input_latent["samples"]
        batch_inds = input_latent["batch_index"] if "batch_index" in input_latent else None
        noise = utils.prepare_noise(latent_image, self.seed, batch_inds, self.noise_device, self.incremental_seed_mode,
                                    variation_seed=self.variation_seed, variation_strength=self.variation_strength, variation_method=self.variation_method)
        return noise.cpu()


class RandomNoise:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "noise_mode": (["GPU(=A1111)", "CPU"],),
                    "batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],),
                    "variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    },
                "optional":
                    {"variation_method": (["linear", "slerp"],), }
                }

    RETURN_TYPES = ("NOISE",)
    FUNCTION = "get_noise"
    CATEGORY = "InspirePack/a1111_compat"

    def get_noise(self, noise_seed, noise_mode, batch_seed_mode, variation_seed, variation_strength, variation_method="linear"):
        return (Inspire_RandomNoise(noise_seed, noise_mode, batch_seed_mode, variation_seed, variation_strength, variation_method=variation_method),)


def inspire_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0,

                     noise_mode="CPU", disable_noise=False, start_step=None, last_step=None, force_full_denoise=False,

                     incremental_seed_mode="comfy", variation_seed=None, variation_strength=None, noise=None, callback=None, variation_method="linear",

                     scheduler_func=None):
    device = comfy.model_management.get_torch_device()
    noise_device = "cpu" if noise_mode == "CPU" else device
    latent_image = latent["samples"]
    if hasattr(comfy.sample, 'fix_empty_latent_channels'):
        latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)

    latent = latent.copy()

    if noise is not None and latent_image.shape[1] != noise.shape[1]:
        print("[Inspire Pack] inspire_ksampler: The type of latent input for noise generation does not match the model's latent type. When using the SD3 model, you must use the SD3 Empty Latent.")
        raise Exception("The type of latent input for noise generation does not match the model's latent type. When using the SD3 model, you must use the SD3 Empty Latent.")

    if noise is None:
        if disable_noise:
            torch.manual_seed(seed)
            noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device=noise_device)
        else:
            batch_inds = latent["batch_index"] if "batch_index" in latent else None
            noise = utils.prepare_noise(latent_image, seed, batch_inds, noise_device, incremental_seed_mode,
                                        variation_seed=variation_seed, variation_strength=variation_strength, variation_method=variation_method)

    if start_step is None:
        if denoise == 1.0:
            start_step = 0
        else:
            advanced_steps = math.floor(steps / denoise)
            start_step = advanced_steps - steps
            steps = advanced_steps

    try:
        samples = common.impact_sampling(
            model=model, add_noise=not disable_noise, seed=seed, steps=steps, cfg=cfg, sampler_name=sampler_name, scheduler=scheduler, positive=positive, negative=negative,
            latent_image=latent, start_at_step=start_step, end_at_step=last_step, return_with_leftover_noise=not force_full_denoise, noise=noise, callback=callback,
            scheduler_func=scheduler_func)
    except Exception as e:
        if "unexpected keyword argument 'scheduler_func'" in str(e):
            print(f"[Inspire Pack] Impact Pack is outdated. (Cannot use GITS scheduler.)")

            samples = common.impact_sampling(
                model=model, add_noise=not disable_noise, seed=seed, steps=steps, cfg=cfg, sampler_name=sampler_name, scheduler=scheduler, positive=positive, negative=negative,
                latent_image=latent, start_at_step=start_step, end_at_step=last_step, return_with_leftover_noise=not force_full_denoise, noise=noise, callback=callback)
        else:
            raise e

    return samples, noise


class KSampler_inspire:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                     "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                     "scheduler": (common.SCHEDULERS, ),
                     "positive": ("CONDITIONING", ),
                     "negative": ("CONDITIONING", ),
                     "latent_image": ("LATENT", ),
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                     "noise_mode": (["GPU(=A1111)", "CPU"],),
                     "batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],),
                     "variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                     },
                "optional":
                    {
                        "variation_method": (["linear", "slerp"],),
                        "scheduler_func_opt": ("SCHEDULER_FUNC",),
                    }
                }

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "doit"

    CATEGORY = "InspirePack/a1111_compat"

    @staticmethod
    def doit(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise, noise_mode,

             batch_seed_mode="comfy", variation_seed=None, variation_strength=None, variation_method="linear", scheduler_func_opt=None):
        return (inspire_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise, noise_mode,
                                 incremental_seed_mode=batch_seed_mode, variation_seed=variation_seed, variation_strength=variation_strength, variation_method=variation_method,
                                 scheduler_func=scheduler_func_opt)[0], )


class KSamplerAdvanced_inspire:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                     "add_noise": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}),
                     "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
                     "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                     "scheduler": (common.SCHEDULERS, ),
                     "positive": ("CONDITIONING", ),
                     "negative": ("CONDITIONING", ),
                     "latent_image": ("LATENT", ),
                     "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                     "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                     "noise_mode": (["GPU(=A1111)", "CPU"],),
                     "return_with_leftover_noise": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}),
                     "batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],),
                     "variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                     },
                "optional":
                    {
                        "variation_method": (["linear", "slerp"],),
                        "noise_opt": ("NOISE",),
                        "scheduler_func_opt": ("SCHEDULER_FUNC",),
                    }
                }

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "doit"

    CATEGORY = "InspirePack/a1111_compat"

    @staticmethod
    def sample(model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, noise_mode, return_with_leftover_noise,

               denoise=1.0, batch_seed_mode="comfy", variation_seed=None, variation_strength=None, noise_opt=None, callback=None, variation_method="linear", scheduler_func_opt=None):
        force_full_denoise = True

        if return_with_leftover_noise:
            force_full_denoise = False

        disable_noise = False

        if not add_noise:
            disable_noise = True

        return inspire_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step,
                                force_full_denoise=force_full_denoise, noise_mode=noise_mode, incremental_seed_mode=batch_seed_mode,
                                variation_seed=variation_seed, variation_strength=variation_strength, noise=noise_opt, callback=callback, variation_method=variation_method,
                                scheduler_func=scheduler_func_opt)

    def doit(self, *args, **kwargs):
        return (self.sample(*args, **kwargs)[0],)


class KSampler_inspire_pipe:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"basic_pipe": ("BASIC_PIPE",),
                     "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                     "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                     "scheduler": (common.SCHEDULERS, ),
                     "latent_image": ("LATENT", ),
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                     "noise_mode": (["GPU(=A1111)", "CPU"],),
                     "batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],),
                     "variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                     },
                "optional":
                    {
                        "scheduler_func_opt": ("SCHEDULER_FUNC",),
                    }
                }

    RETURN_TYPES = ("LATENT", "VAE")
    FUNCTION = "sample"

    CATEGORY = "InspirePack/a1111_compat"

    def sample(self, basic_pipe, seed, steps, cfg, sampler_name, scheduler, latent_image, denoise, noise_mode, batch_seed_mode="comfy",

               variation_seed=None, variation_strength=None, scheduler_func_opt=None):
        model, clip, vae, positive, negative = basic_pipe
        latent = inspire_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise, noise_mode, incremental_seed_mode=batch_seed_mode,
                                  variation_seed=variation_seed, variation_strength=variation_strength, scheduler_func=scheduler_func_opt)[0]
        return latent, vae


class KSamplerAdvanced_inspire_pipe:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"basic_pipe": ("BASIC_PIPE",),
                     "add_noise": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}),
                     "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
                     "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                     "scheduler": (common.SCHEDULERS, ),
                     "latent_image": ("LATENT", ),
                     "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                     "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                     "noise_mode": (["GPU(=A1111)", "CPU"],),
                     "return_with_leftover_noise": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}),
                     "batch_seed_mode": (["incremental", "comfy", "variation str inc:0.01", "variation str inc:0.05"],),
                     "variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                     },
                "optional":
                    {
                        "noise_opt": ("NOISE",),
                        "scheduler_func_opt": ("SCHEDULER_FUNC",),
                    }
                }

    RETURN_TYPES = ("LATENT", "VAE", )
    FUNCTION = "sample"

    CATEGORY = "InspirePack/a1111_compat"

    def sample(self, basic_pipe, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, latent_image, start_at_step, end_at_step, noise_mode, return_with_leftover_noise,

               denoise=1.0, batch_seed_mode="comfy", variation_seed=None, variation_strength=None, noise_opt=None, scheduler_func_opt=None):
        model, clip, vae, positive, negative = basic_pipe
        latent = KSamplerAdvanced_inspire().sample(model=model, add_noise=add_noise, noise_seed=noise_seed,
                                                   steps=steps, cfg=cfg, sampler_name=sampler_name, scheduler=scheduler,
                                                   positive=positive, negative=negative, latent_image=latent_image,
                                                   start_at_step=start_at_step, end_at_step=end_at_step,
                                                   noise_mode=noise_mode, return_with_leftover_noise=return_with_leftover_noise,
                                                   denoise=denoise, batch_seed_mode=batch_seed_mode, variation_seed=variation_seed,
                                                   variation_strength=variation_strength, noise_opt=noise_opt, scheduler_func_opt=scheduler_func_opt)[0]
        return latent, vae


# Modified version of ComfyUI main code
# https://github.com/comfyanonymous/ComfyUI/blob/master/comfy_extras/nodes_hypertile.py
def get_closest_divisors(hw: int, aspect_ratio: float) -> tuple[int, int]:
    pairs = [(i, hw // i) for i in range(int(math.sqrt(hw)), 1, -1) if hw % i == 0]
    pair = min(((i, hw // i) for i in range(2, hw + 1) if hw % i == 0),
               key=lambda x: abs(x[1] / x[0] - aspect_ratio))
    pairs.append(pair)
    res = min(pairs, key=lambda x: max(x) / min(x))
    return res


def calc_optimal_hw(hw: int, aspect_ratio: float) -> tuple[int, int]:
    hcand = round(math.sqrt(hw * aspect_ratio))
    wcand = hw // hcand

    if hcand * wcand != hw:
        wcand = round(math.sqrt(hw / aspect_ratio))
        hcand = hw // wcand

        if hcand * wcand != hw:
            return get_closest_divisors(hw, aspect_ratio)

    return hcand, wcand


def random_divisor(value: int, min_value: int, /, max_options: int = 1, rand_obj=random.Random()) -> int:
    # print(f"value={value}, min_value={min_value}, max_options={max_options}")
    min_value = min(min_value, value)

    # All big divisors of value (inclusive)
    divisors = [i for i in range(min_value, value + 1) if value % i == 0]

    ns = [value // i for i in divisors[:max_options]]  # has at least 1 element

    if len(ns) - 1 > 0:
        idx = rand_obj.randint(0, len(ns) - 1)
    else:
        idx = 0
    # print(f"ns={ns}, idx={idx}")

    return ns[idx]

# def get_divisors(value: int, min_value: int, /, max_options: int = 1) -> list[int]:
#     """
#     Returns divisors of value that
#         x * min_value <= value
#     in big -> small order, amount of divisors is limited by max_options
#     """
#     max_options = max(1, max_options) # at least 1 option should be returned
#     min_value = min(min_value, value)
#     divisors = [i for i in range(min_value, value + 1) if value % i == 0] # divisors in small -> big order
#     ns = [value // i for i in divisors[:max_options]]  # has at least 1 element # big -> small order
#     return ns


# def random_divisor(value: int, min_value: int, /, max_options: int = 1, rand_obj=None) -> int:
#     """
#     Returns a random divisor of value that
#         x * min_value <= value
#     if max_options is 1, the behavior is deterministic
#     """
#     print(f"value={value}, min_value={min_value}, max_options={max_options}")
#     ns = get_divisors(value, min_value, max_options=max_options) # get cached divisors
#     idx = rand_obj.randint(0, len(ns) - 1)
#     print(f"ns={ns}, idx={idx}")
#
#     return ns[idx]


class HyperTileInspire:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"model": ("MODEL",),
                             "tile_size": ("INT", {"default": 256, "min": 1, "max": 2048}),
                             "swap_size": ("INT", {"default": 2, "min": 1, "max": 128}),
                             "max_depth": ("INT", {"default": 0, "min": 0, "max": 10}),
                             "scale_depth": ("BOOLEAN", {"default": False}),
                             "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                             }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "InspirePack/__for_testing"

    def patch(self, model, tile_size, swap_size, max_depth, scale_depth, seed):
        latent_tile_size = max(32, tile_size) // 8
        temp = None

        rand_obj = random.Random()
        rand_obj.seed(seed)

        def hypertile_in(q, k, v, extra_options):
            nonlocal temp
            model_chans = q.shape[-2]
            orig_shape = extra_options['original_shape']
            apply_to = []
            for i in range(max_depth + 1):
                apply_to.append((orig_shape[-2] / (2 ** i)) * (orig_shape[-1] / (2 ** i)))

            if model_chans in apply_to:
                shape = extra_options["original_shape"]
                aspect_ratio = shape[-1] / shape[-2]

                hw = q.size(1)
                # h, w = calc_optimal_hw(hw, aspect_ratio)
                h, w = round(math.sqrt(hw * aspect_ratio)), round(math.sqrt(hw / aspect_ratio))

                factor = (2 ** apply_to.index(model_chans)) if scale_depth else 1
                nh = random_divisor(h, latent_tile_size * factor, swap_size, rand_obj)
                nw = random_divisor(w, latent_tile_size * factor, swap_size, rand_obj)

                print(f"factor: {factor} <--- params.depth: {apply_to.index(model_chans)} / scale_depth: {scale_depth} / latent_tile_size={latent_tile_size}")
                # print(f"h: {h}, w:{w} --> nh: {nh}, nw: {nw}")

                if nh * nw > 1:
                    q = rearrange(q, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw)
                    temp = (nh, nw, h, w)
                # else:
                #     temp = None

                print(f"q={q} / k={k} / v={v}")
                return q, k, v

            return q, k, v

        def hypertile_out(out, extra_options):
            nonlocal temp
            if temp is not None:
                nh, nw, h, w = temp
                temp = None
                out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw)
                out = rearrange(out, "b nh nw (h w) c -> b (nh h nw w) c", h=h // nh, w=w // nw)
            return out

        m = model.clone()
        m.set_model_attn1_patch(hypertile_in)
        m.set_model_attn1_output_patch(hypertile_out)
        return (m, )


NODE_CLASS_MAPPINGS = {
    "KSampler //Inspire": KSampler_inspire,
    "KSamplerAdvanced //Inspire": KSamplerAdvanced_inspire,
    "KSamplerPipe //Inspire": KSampler_inspire_pipe,
    "KSamplerAdvancedPipe //Inspire": KSamplerAdvanced_inspire_pipe,
    "RandomNoise //Inspire": RandomNoise,
    "HyperTile //Inspire": HyperTileInspire
}
NODE_DISPLAY_NAME_MAPPINGS = {
    "KSampler //Inspire": "KSampler (inspire)",
    "KSamplerAdvanced //Inspire": "KSamplerAdvanced (inspire)",
    "KSamplerPipe //Inspire": "KSampler [pipe] (inspire)",
    "KSamplerAdvancedPipe //Inspire": "KSamplerAdvanced [pipe] (inspire)",
    "RandomNoise //Inspire": "RandomNoise (inspire)",
    "HyperTile //Inspire": "HyperTile (Inspire)"
}