Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,646 Bytes
3d5837a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
import itertools
from typing import Optional
import numpy as np
import torch
from PIL import Image, ImageDraw
import math
import cv2
def apply_variation_noise(latent_image, noise_device, variation_seed, variation_strength, mask=None, variation_method='linear'):
latent_size = latent_image.size()
latent_size_1batch = [1, latent_size[1], latent_size[2], latent_size[3]]
if noise_device == "cpu":
variation_generator = torch.manual_seed(variation_seed)
else:
torch.cuda.manual_seed(variation_seed)
variation_generator = None
variation_latent = torch.randn(latent_size_1batch, dtype=latent_image.dtype, layout=latent_image.layout,
generator=variation_generator, device=noise_device)
variation_noise = variation_latent.expand(latent_image.size()[0], -1, -1, -1)
if variation_strength == 0:
return latent_image
elif mask is None:
result = (1 - variation_strength) * latent_image + variation_strength * variation_noise
else:
# this seems precision is not enough when variation_strength is 0.0
mixed_noise = mix_noise(latent_image, variation_noise, variation_strength, variation_method=variation_method)
result = (mask == 1).float() * mixed_noise + (mask == 0).float() * latent_image
return result
# CREDIT: https://github.com/BlenderNeko/ComfyUI_Noise/blob/afb14757216257b12268c91845eac248727a55e2/nodes.py#L68
# https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
def slerp(val, low, high):
dims = low.shape
low = low.reshape(dims[0], -1)
high = high.reshape(dims[0], -1)
low_norm = low/torch.norm(low, dim=1, keepdim=True)
high_norm = high/torch.norm(high, dim=1, keepdim=True)
low_norm[low_norm != low_norm] = 0.0
high_norm[high_norm != high_norm] = 0.0
omega = torch.acos((low_norm*high_norm).sum(1))
so = torch.sin(omega)
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
return res.reshape(dims)
def mix_noise(from_noise, to_noise, strength, variation_method):
to_noise = to_noise.to(from_noise.device)
if variation_method == 'slerp':
mixed_noise = slerp(strength, from_noise, to_noise)
else:
# linear
mixed_noise = (1 - strength) * from_noise + strength * to_noise
# NOTE: Since the variance of the Gaussian noise in mixed_noise has changed, it must be corrected through scaling.
scale_factor = math.sqrt((1 - strength) ** 2 + strength ** 2)
mixed_noise /= scale_factor
return mixed_noise
def prepare_noise(latent_image, seed, noise_inds=None, noise_device="cpu", incremental_seed_mode="comfy", variation_seed=None, variation_strength=None, variation_method="linear"):
"""
creates random noise given a latent image and a seed.
optional arg skip can be used to skip and discard x number of noise generations for a given seed
"""
latent_size = latent_image.size()
latent_size_1batch = [1, latent_size[1], latent_size[2], latent_size[3]]
if variation_strength is not None and variation_strength > 0 or incremental_seed_mode.startswith("variation str inc"):
if noise_device == "cpu":
variation_generator = torch.manual_seed(variation_seed)
else:
torch.cuda.manual_seed(variation_seed)
variation_generator = None
variation_latent = torch.randn(latent_size_1batch, dtype=latent_image.dtype, layout=latent_image.layout,
generator=variation_generator, device=noise_device)
else:
variation_latent = None
def apply_variation(input_latent, strength_up=None):
if variation_latent is None:
return input_latent
else:
strength = variation_strength
if strength_up is not None:
strength += strength_up
variation_noise = variation_latent.expand(input_latent.size()[0], -1, -1, -1)
mixed_noise = mix_noise(input_latent, variation_noise, strength, variation_method)
return mixed_noise
# method: incremental seed batch noise
if noise_inds is None and incremental_seed_mode == "incremental":
batch_cnt = latent_size[0]
latents = None
for i in range(batch_cnt):
if noise_device == "cpu":
generator = torch.manual_seed(seed+i)
else:
torch.cuda.manual_seed(seed+i)
generator = None
latent = torch.randn(latent_size_1batch, dtype=latent_image.dtype, layout=latent_image.layout,
generator=generator, device=noise_device)
latent = apply_variation(latent)
if latents is None:
latents = latent
else:
latents = torch.cat((latents, latent), dim=0)
return latents
# method: incremental variation batch noise
elif noise_inds is None and incremental_seed_mode.startswith("variation str inc"):
batch_cnt = latent_size[0]
latents = None
for i in range(batch_cnt):
if noise_device == "cpu":
generator = torch.manual_seed(seed)
else:
torch.cuda.manual_seed(seed)
generator = None
latent = torch.randn(latent_size_1batch, dtype=latent_image.dtype, layout=latent_image.layout,
generator=generator, device=noise_device)
step = float(incremental_seed_mode[18:])
latent = apply_variation(latent, step*i)
if latents is None:
latents = latent
else:
latents = torch.cat((latents, latent), dim=0)
return latents
# method: comfy batch noise
if noise_device == "cpu":
generator = torch.manual_seed(seed)
else:
torch.cuda.manual_seed(seed)
generator = None
if noise_inds is None:
latents = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout,
generator=generator, device=noise_device)
latents = apply_variation(latents)
return latents
unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
noises = []
for i in range(unique_inds[-1] + 1):
noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout,
generator=generator, device=noise_device)
if i in unique_inds:
noises.append(noise)
noises = [noises[i] for i in inverse]
noises = torch.cat(noises, axis=0)
return noises
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
def empty_pil_tensor(w=64, h=64):
image = Image.new("RGB", (w, h))
draw = ImageDraw.Draw(image)
draw.rectangle((0, 0, w-1, h-1), fill=(0, 0, 0))
return pil2tensor(image)
def try_install_custom_node(custom_node_url, msg):
try:
import cm_global
cm_global.try_call(api='cm.try-install-custom-node',
sender="Inspire Pack", custom_node_url=custom_node_url, msg=msg)
except Exception as e:
print(msg)
print(f"[Inspire Pack] ComfyUI-Manager is outdated. The custom node installation feature is not available.")
def empty_latent():
return torch.zeros([1, 4, 8, 8])
# wildcard trick is taken from pythongossss's
class AnyType(str):
def __ne__(self, __value: object) -> bool:
return False
any_typ = AnyType("*")
# author: Trung0246 --->
class TautologyStr(str):
def __ne__(self, other):
return False
class ByPassTypeTuple(tuple):
def __getitem__(self, index):
if index > 0:
index = 0
item = super().__getitem__(index)
if isinstance(item, str):
return TautologyStr(item)
return item
class TaggedCache:
def __init__(self, tag_settings: Optional[dict]=None):
self._tag_settings = tag_settings or {} # tag cache size
self._data = {}
def __getitem__(self, key):
for tag_data in self._data.values():
if key in tag_data:
return tag_data[key]
raise KeyError(f'Key `{key}` does not exist')
def __setitem__(self, key, value: tuple):
# value: (tag: str, (islist: bool, data: *))
# if key already exists, pop old value
for tag_data in self._data.values():
if key in tag_data:
tag_data.pop(key, None)
break
tag = value[0]
if tag not in self._data:
try:
from cachetools import LRUCache
default_size = 20
if 'ckpt' in tag:
default_size = 5
elif tag in ['latent', 'image']:
default_size = 100
self._data[tag] = LRUCache(maxsize=self._tag_settings.get(tag, default_size))
except (ImportError, ModuleNotFoundError):
# TODO: implement a simple lru dict
self._data[tag] = {}
self._data[tag][key] = value
def __delitem__(self, key):
for tag_data in self._data.values():
if key in tag_data:
del tag_data[key]
return
raise KeyError(f'Key `{key}` does not exist')
def __contains__(self, key):
return any(key in tag_data for tag_data in self._data.values())
def items(self):
yield from itertools.chain(*map(lambda x :x.items(), self._data.values()))
def get(self, key, default=None):
"""D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None."""
for tag_data in self._data.values():
if key in tag_data:
return tag_data[key]
return default
def clear(self):
# clear all cache
self._data = {}
def make_3d_mask(mask):
if len(mask.shape) == 4:
return mask.squeeze(0)
elif len(mask.shape) == 2:
return mask.unsqueeze(0)
return mask
def dilate_mask(mask: torch.Tensor, dilation_factor: float) -> torch.Tensor:
"""Dilate a mask using a square kernel with a given dilation factor."""
kernel_size = int(dilation_factor * 2) + 1
kernel = np.ones((abs(kernel_size), abs(kernel_size)), np.uint8)
masks = make_3d_mask(mask).numpy()
dilated_masks = []
for m in masks:
if dilation_factor > 0:
m2 = cv2.dilate(m, kernel, iterations=1)
else:
m2 = cv2.erode(m, kernel, iterations=1)
dilated_masks.append(torch.from_numpy(m2))
return torch.stack(dilated_masks)
def flatten_non_zero_override(masks: torch.Tensor):
"""
flatten multiple layer mask tensor to 1 layer mask tensor.
Override the lower layer with the tensor from the upper layer, but only override non-zero values.
:param masks: 3d mask
:return: flatten mask
"""
final_mask = masks[0]
for i in range(1, masks.size(0)):
non_zero_mask = masks[i] != 0
final_mask[non_zero_mask] = masks[i][non_zero_mask]
return final_mask
|