Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,857 Bytes
3d5837a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
import numpy as np
from PIL import Image, ImageFilter
import torch
import torch.nn.functional as F
from torchvision.transforms import GaussianBlur
import math
if (not hasattr(Image, 'Resampling')): # For older versions of Pillow
Image.Resampling = Image
BLUR_KERNEL_SIZE = 15
def tensor_to_pil(img_tensor, batch_index=0):
# Takes an image in a batch in the form of a tensor of shape [batch_size, channels, height, width]
# and returns an PIL Image with the corresponding mode deduced by the number of channels
# Take the image in the batch given by batch_index
img_tensor = img_tensor[batch_index].unsqueeze(0)
i = 255. * img_tensor.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8).squeeze())
return img
def pil_to_tensor(image):
# Takes a PIL image and returns a tensor of shape [1, height, width, channels]
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image).unsqueeze(0)
if len(image.shape) == 3: # If the image is grayscale, add a channel dimension
image = image.unsqueeze(-1)
return image
def controlnet_hint_to_pil(tensor, batch_index=0):
return tensor_to_pil(tensor.movedim(1, -1), batch_index)
def pil_to_controlnet_hint(img):
return pil_to_tensor(img).movedim(-1, 1)
def crop_tensor(tensor, region):
# Takes a tensor of shape [batch_size, height, width, channels] and crops it to the given region
x1, y1, x2, y2 = region
return tensor[:, y1:y2, x1:x2, :]
def resize_tensor(tensor, size, mode="nearest-exact"):
# Takes a tensor of shape [B, C, H, W] and resizes
# it to a shape of [B, C, size[0], size[1]] using the given mode
return torch.nn.functional.interpolate(tensor, size=size, mode=mode)
def get_crop_region(mask, pad=0):
# Takes a black and white PIL image in 'L' mode and returns the coordinates of the white rectangular mask region
# Should be equivalent to the get_crop_region function from https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/master/modules/masking.py
coordinates = mask.getbbox()
if coordinates is not None:
x1, y1, x2, y2 = coordinates
else:
x1, y1, x2, y2 = mask.width, mask.height, 0, 0
# Apply padding
x1 = max(x1 - pad, 0)
y1 = max(y1 - pad, 0)
x2 = min(x2 + pad, mask.width)
y2 = min(y2 + pad, mask.height)
return fix_crop_region((x1, y1, x2, y2), (mask.width, mask.height))
def fix_crop_region(region, image_size):
# Remove the extra pixel added by the get_crop_region function
image_width, image_height = image_size
x1, y1, x2, y2 = region
if x2 < image_width:
x2 -= 1
if y2 < image_height:
y2 -= 1
return x1, y1, x2, y2
def expand_crop(region, width, height, target_width, target_height):
'''
Expands a crop region to a specified target size.
:param region: A tuple of the form (x1, y1, x2, y2) denoting the upper left and the lower right points
of the rectangular region. Expected to have x2 > x1 and y2 > y1.
:param width: The width of the image the crop region is from.
:param height: The height of the image the crop region is from.
:param target_width: The desired width of the crop region.
:param target_height: The desired height of the crop region.
'''
x1, y1, x2, y2 = region
actual_width = x2 - x1
actual_height = y2 - y1
# target_width = math.ceil(actual_width / 8) * 8
# target_height = math.ceil(actual_height / 8) * 8
# Try to expand region to the right of half the difference
width_diff = target_width - actual_width
x2 = min(x2 + width_diff // 2, width)
# Expand region to the left of the difference including the pixels that could not be expanded to the right
width_diff = target_width - (x2 - x1)
x1 = max(x1 - width_diff, 0)
# Try the right again
width_diff = target_width - (x2 - x1)
x2 = min(x2 + width_diff, width)
# Try to expand region to the bottom of half the difference
height_diff = target_height - actual_height
y2 = min(y2 + height_diff // 2, height)
# Expand region to the top of the difference including the pixels that could not be expanded to the bottom
height_diff = target_height - (y2 - y1)
y1 = max(y1 - height_diff, 0)
# Try the bottom again
height_diff = target_height - (y2 - y1)
y2 = min(y2 + height_diff, height)
return (x1, y1, x2, y2), (target_width, target_height)
def resize_region(region, init_size, resize_size):
# Resize a crop so that it fits an image that was resized to the given width and height
x1, y1, x2, y2 = region
init_width, init_height = init_size
resize_width, resize_height = resize_size
x1 = math.floor(x1 * resize_width / init_width)
x2 = math.ceil(x2 * resize_width / init_width)
y1 = math.floor(y1 * resize_height / init_height)
y2 = math.ceil(y2 * resize_height / init_height)
return (x1, y1, x2, y2)
def pad_image(image, left_pad, right_pad, top_pad, bottom_pad, fill=False, blur=False):
'''
Pads an image with the given number of pixels on each side and fills the padding with data from the edges.
:param image: A PIL image
:param left_pad: The number of pixels to pad on the left side
:param right_pad: The number of pixels to pad on the right side
:param top_pad: The number of pixels to pad on the top side
:param bottom_pad: The number of pixels to pad on the bottom side
:param blur: Whether to blur the padded edges
:return: A PIL image with size (image.width + left_pad + right_pad, image.height + top_pad + bottom_pad)
'''
left_edge = image.crop((0, 1, 1, image.height - 1))
right_edge = image.crop((image.width - 1, 1, image.width, image.height - 1))
top_edge = image.crop((1, 0, image.width - 1, 1))
bottom_edge = image.crop((1, image.height - 1, image.width - 1, image.height))
new_width = image.width + left_pad + right_pad
new_height = image.height + top_pad + bottom_pad
padded_image = Image.new(image.mode, (new_width, new_height))
padded_image.paste(image, (left_pad, top_pad))
if fill:
for i in range(left_pad):
edge = left_edge.resize(
(1, new_height - i * (top_pad + bottom_pad) // left_pad), resample=Image.Resampling.NEAREST)
padded_image.paste(edge, (i, i * top_pad // left_pad))
for i in range(right_pad):
edge = right_edge.resize(
(1, new_height - i * (top_pad + bottom_pad) // right_pad), resample=Image.Resampling.NEAREST)
padded_image.paste(edge, (new_width - 1 - i, i * top_pad // right_pad))
for i in range(top_pad):
edge = top_edge.resize(
(new_width - i * (left_pad + right_pad) // top_pad, 1), resample=Image.Resampling.NEAREST)
padded_image.paste(edge, (i * left_pad // top_pad, i))
for i in range(bottom_pad):
edge = bottom_edge.resize(
(new_width - i * (left_pad + right_pad) // bottom_pad, 1), resample=Image.Resampling.NEAREST)
padded_image.paste(edge, (i * left_pad // bottom_pad, new_height - 1 - i))
if blur and not (left_pad == right_pad == top_pad == bottom_pad == 0):
padded_image = padded_image.filter(ImageFilter.GaussianBlur(BLUR_KERNEL_SIZE))
padded_image.paste(image, (left_pad, top_pad))
return padded_image
def pad_image2(image, left_pad, right_pad, top_pad, bottom_pad, fill=False, blur=False):
'''
Pads an image with the given number of pixels on each side and fills the padding with data from the edges.
Faster than pad_image, but only pads with edge data in straight lines.
:param image: A PIL image
:param left_pad: The number of pixels to pad on the left side
:param right_pad: The number of pixels to pad on the right side
:param top_pad: The number of pixels to pad on the top side
:param bottom_pad: The number of pixels to pad on the bottom side
:param blur: Whether to blur the padded edges
:return: A PIL image with size (image.width + left_pad + right_pad, image.height + top_pad + bottom_pad)
'''
left_edge = image.crop((0, 1, 1, image.height - 1))
right_edge = image.crop((image.width - 1, 1, image.width, image.height - 1))
top_edge = image.crop((1, 0, image.width - 1, 1))
bottom_edge = image.crop((1, image.height - 1, image.width - 1, image.height))
new_width = image.width + left_pad + right_pad
new_height = image.height + top_pad + bottom_pad
padded_image = Image.new(image.mode, (new_width, new_height))
padded_image.paste(image, (left_pad, top_pad))
if fill:
if left_pad > 0:
padded_image.paste(left_edge.resize((left_pad, new_height), resample=Image.Resampling.NEAREST), (0, 0))
if right_pad > 0:
padded_image.paste(right_edge.resize((right_pad, new_height),
resample=Image.Resampling.NEAREST), (new_width - right_pad, 0))
if top_pad > 0:
padded_image.paste(top_edge.resize((new_width, top_pad), resample=Image.Resampling.NEAREST), (0, 0))
if bottom_pad > 0:
padded_image.paste(bottom_edge.resize((new_width, bottom_pad),
resample=Image.Resampling.NEAREST), (0, new_height - bottom_pad))
if blur and not (left_pad == right_pad == top_pad == bottom_pad == 0):
padded_image = padded_image.filter(ImageFilter.GaussianBlur(BLUR_KERNEL_SIZE))
padded_image.paste(image, (left_pad, top_pad))
return padded_image
def pad_tensor(tensor, left_pad, right_pad, top_pad, bottom_pad, fill=False, blur=False):
'''
Pads an image tensor with the given number of pixels on each side and fills the padding with data from the edges.
:param tensor: A tensor of shape [B, H, W, C]
:param left_pad: The number of pixels to pad on the left side
:param right_pad: The number of pixels to pad on the right side
:param top_pad: The number of pixels to pad on the top side
:param bottom_pad: The number of pixels to pad on the bottom side
:param blur: Whether to blur the padded edges
:return: A tensor of shape [B, H + top_pad + bottom_pad, W + left_pad + right_pad, C]
'''
batch_size, channels, height, width = tensor.shape
h_pad = left_pad + right_pad
v_pad = top_pad + bottom_pad
new_width = width + h_pad
new_height = height + v_pad
# Create empty image
padded = torch.zeros((batch_size, channels, new_height, new_width), dtype=tensor.dtype)
# Copy the original image into the centor of the padded tensor
padded[:, :, top_pad:top_pad + height, left_pad:left_pad + width] = tensor
# Duplicate the edges of the original image into the padding
if top_pad > 0:
padded[:, :, :top_pad, :] = padded[:, :, top_pad:top_pad + 1, :] # Top edge
if bottom_pad > 0:
padded[:, :, -bottom_pad:, :] = padded[:, :, -bottom_pad - 1:-bottom_pad, :] # Bottom edge
if left_pad > 0:
padded[:, :, :, :left_pad] = padded[:, :, :, left_pad:left_pad + 1] # Left edge
if right_pad > 0:
padded[:, :, :, -right_pad:] = padded[:, :, :, -right_pad - 1:-right_pad] # Right edge
return padded
def resize_and_pad_image(image, width, height, fill=False, blur=False):
'''
Resizes an image to the given width and height and pads it to the given width and height.
:param image: A PIL image
:param width: The width of the resized image
:param height: The height of the resized image
:param fill: Whether to fill the padding with data from the edges
:param blur: Whether to blur the padded edges
:return: A PIL image of size (width, height)
'''
width_ratio = width / image.width
height_ratio = height / image.height
if height_ratio > width_ratio:
resize_ratio = width_ratio
else:
resize_ratio = height_ratio
resize_width = round(image.width * resize_ratio)
resize_height = round(image.height * resize_ratio)
resized = image.resize((resize_width, resize_height), resample=Image.Resampling.LANCZOS)
# Pad the sides of the image to get the image to the desired size that wasn't covered by the resize
horizontal_pad = (width - resize_width) // 2
vertical_pad = (height - resize_height) // 2
result = pad_image2(resized, horizontal_pad, horizontal_pad, vertical_pad, vertical_pad, fill, blur)
result = result.resize((width, height), resample=Image.Resampling.LANCZOS)
return result, (horizontal_pad, vertical_pad)
def resize_and_pad_tensor(tensor, width, height, fill=False, blur=False):
'''
Resizes an image tensor to the given width and height and pads it to the given width and height.
:param tensor: A tensor of shape [B, H, W, C]
:param width: The width of the resized image
:param height: The height of the resized image
:param fill: Whether to fill the padding with data from the edges
:param blur: Whether to blur the padded edges
:return: A tensor of shape [B, height, width, C]
'''
# Resize the image to the closest size that maintains the aspect ratio
width_ratio = width / tensor.shape[3]
height_ratio = height / tensor.shape[2]
if height_ratio > width_ratio:
resize_ratio = width_ratio
else:
resize_ratio = height_ratio
resize_width = round(tensor.shape[3] * resize_ratio)
resize_height = round(tensor.shape[2] * resize_ratio)
resized = F.interpolate(tensor, size=(resize_height, resize_width), mode='nearest-exact')
# Pad the sides of the image to get the image to the desired size that wasn't covered by the resize
horizontal_pad = (width - resize_width) // 2
vertical_pad = (height - resize_height) // 2
result = pad_tensor(resized, horizontal_pad, horizontal_pad, vertical_pad, vertical_pad, fill, blur)
result = F.interpolate(result, size=(height, width), mode='nearest-exact')
return result
def crop_controlnet(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad):
if "control" not in cond_dict:
return
c = cond_dict["control"]
controlnet = c.copy()
cond_dict["control"] = controlnet
while c is not None:
# hint is shape (B, C, H, W)
hint = controlnet.cond_hint_original
resized_crop = resize_region(region, canvas_size, hint.shape[:-3:-1])
hint = crop_tensor(hint.movedim(1, -1), resized_crop).movedim(-1, 1)
hint = resize_tensor(hint, tile_size[::-1])
controlnet.cond_hint_original = hint
c = c.previous_controlnet
controlnet.set_previous_controlnet(c.copy() if c is not None else None)
controlnet = controlnet.previous_controlnet
def region_intersection(region1, region2):
"""
Returns the coordinates of the intersection of two rectangular regions.
:param region1: A tuple of the form (x1, y1, x2, y2) denoting the upper left and the lower right points
of the first rectangular region. Expected to have x2 > x1 and y2 > y1.
:param region2: The second rectangular region with the same format as the first.
:return: A tuple of the form (x1, y1, x2, y2) denoting the rectangular intersection.
None if there is no intersection.
"""
x1, y1, x2, y2 = region1
x1_, y1_, x2_, y2_ = region2
x1 = max(x1, x1_)
y1 = max(y1, y1_)
x2 = min(x2, x2_)
y2 = min(y2, y2_)
if x1 >= x2 or y1 >= y2:
return None
return (x1, y1, x2, y2)
def crop_gligen(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad):
if "gligen" not in cond_dict:
return
type, model, cond = cond_dict["gligen"]
if type != "position":
from warnings import warn
warn(f"Unknown gligen type {type}")
return
cropped = []
for c in cond:
emb, h, w, y, x = c
# Get the coordinates of the box in the upscaled image
x1 = x * 8
y1 = y * 8
x2 = x1 + w * 8
y2 = y1 + h * 8
gligen_upscaled_box = resize_region((x1, y1, x2, y2), init_size, canvas_size)
# Calculate the intersection of the gligen box and the region
intersection = region_intersection(gligen_upscaled_box, region)
if intersection is None:
continue
x1, y1, x2, y2 = intersection
# Offset the gligen box so that the origin is at the top left of the tile region
x1 -= region[0]
y1 -= region[1]
x2 -= region[0]
y2 -= region[1]
# Add the padding
x1 += w_pad
y1 += h_pad
x2 += w_pad
y2 += h_pad
# Set the new position params
h = (y2 - y1) // 8
w = (x2 - x1) // 8
x = x1 // 8
y = y1 // 8
cropped.append((emb, h, w, y, x))
cond_dict["gligen"] = (type, model, cropped)
def crop_area(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad):
if "area" not in cond_dict:
return
# Resize the area conditioning to the canvas size and confine it to the tile region
h, w, y, x = cond_dict["area"]
w, h, x, y = 8 * w, 8 * h, 8 * x, 8 * y
x1, y1, x2, y2 = resize_region((x, y, x + w, y + h), init_size, canvas_size)
intersection = region_intersection((x1, y1, x2, y2), region)
if intersection is None:
del cond_dict["area"]
del cond_dict["strength"]
return
x1, y1, x2, y2 = intersection
# Offset origin to the top left of the tile
x1 -= region[0]
y1 -= region[1]
x2 -= region[0]
y2 -= region[1]
# Add the padding
x1 += w_pad
y1 += h_pad
x2 += w_pad
y2 += h_pad
# Set the params for tile
w, h = (x2 - x1) // 8, (y2 - y1) // 8
x, y = x1 // 8, y1 // 8
cond_dict["area"] = (h, w, y, x)
def crop_mask(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad):
if "mask" not in cond_dict:
return
mask_tensor = cond_dict["mask"] # (B, H, W)
masks = []
for i in range(mask_tensor.shape[0]):
# Convert to PIL image
mask = tensor_to_pil(mask_tensor, i) # W x H
# Resize the mask to the canvas size
mask = mask.resize(canvas_size, Image.Resampling.BICUBIC)
# Crop the mask to the region
mask = mask.crop(region)
# Add padding
mask, _ = resize_and_pad_image(mask, tile_size[0], tile_size[1], fill=True)
# Resize the mask to the tile size
if tile_size != mask.size:
mask = mask.resize(tile_size, Image.Resampling.BICUBIC)
# Convert back to tensor
mask = pil_to_tensor(mask) # (1, H, W, 1)
mask = mask.squeeze(-1) # (1, H, W)
masks.append(mask)
cond_dict["mask"] = torch.cat(masks, dim=0) # (B, H, W)
def crop_cond(cond, region, init_size, canvas_size, tile_size, w_pad=0, h_pad=0):
cropped = []
for emb, x in cond:
cond_dict = x.copy()
n = [emb, cond_dict]
crop_controlnet(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad)
crop_gligen(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad)
crop_area(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad)
crop_mask(cond_dict, region, init_size, canvas_size, tile_size, w_pad, h_pad)
cropped.append(n)
return cropped
|