Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
from PIL import Image | |
class ConstrainImage: | |
""" | |
A node that constrains an image to a maximum and minimum size while maintaining aspect ratio. | |
""" | |
def INPUT_TYPES(cls): | |
return { | |
"required": { | |
"images": ("IMAGE",), | |
"max_width": ("INT", {"default": 1024, "min": 0}), | |
"max_height": ("INT", {"default": 1024, "min": 0}), | |
"min_width": ("INT", {"default": 0, "min": 0}), | |
"min_height": ("INT", {"default": 0, "min": 0}), | |
"crop_if_required": (["yes", "no"], {"default": "no"}), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "constrain_image" | |
CATEGORY = "image" | |
OUTPUT_IS_LIST = (True,) | |
def constrain_image(self, images, max_width, max_height, min_width, min_height, crop_if_required): | |
crop_if_required = crop_if_required == "yes" | |
results = [] | |
for image in images: | |
i = 255. * image.cpu().numpy() | |
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)).convert("RGB") | |
current_width, current_height = img.size | |
aspect_ratio = current_width / current_height | |
constrained_width = max(min(current_width, min_width), max_width) | |
constrained_height = max(min(current_height, min_height), max_height) | |
if constrained_width / constrained_height > aspect_ratio: | |
constrained_width = max(int(constrained_height * aspect_ratio), min_width) | |
if crop_if_required: | |
constrained_height = int(current_height / (current_width / constrained_width)) | |
else: | |
constrained_height = max(int(constrained_width / aspect_ratio), min_height) | |
if crop_if_required: | |
constrained_width = int(current_width / (current_height / constrained_height)) | |
resized_image = img.resize((constrained_width, constrained_height), Image.LANCZOS) | |
if crop_if_required and (constrained_width > max_width or constrained_height > max_height): | |
left = max((constrained_width - max_width) // 2, 0) | |
top = max((constrained_height - max_height) // 2, 0) | |
right = min(constrained_width, max_width) + left | |
bottom = min(constrained_height, max_height) + top | |
resized_image = resized_image.crop((left, top, right, bottom)) | |
resized_image = np.array(resized_image).astype(np.float32) / 255.0 | |
resized_image = torch.from_numpy(resized_image)[None,] | |
results.append(resized_image) | |
return (results,) | |
NODE_CLASS_MAPPINGS = { | |
"ConstrainImage|pysssss": ConstrainImage, | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"ConstrainImage|pysssss": "Constrain Image 🐍", | |
} | |