Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import sys | |
import comfy.samplers | |
import comfy.sd | |
import warnings | |
from segment_anything import sam_model_registry | |
from io import BytesIO | |
import piexif | |
import zipfile | |
import re | |
import impact.wildcards | |
from impact.utils import * | |
import impact.core as core | |
from impact.core import SEG | |
from impact.config import latent_letter_path | |
from nodes import MAX_RESOLUTION | |
from PIL import Image, ImageOps | |
import numpy as np | |
import hashlib | |
import json | |
import safetensors.torch | |
from PIL.PngImagePlugin import PngInfo | |
import comfy.model_management | |
import base64 | |
import impact.wildcards as wildcards | |
from . import hooks | |
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') | |
model_path = folder_paths.models_dir | |
# folder_paths.supported_pt_extensions | |
add_folder_path_and_extensions("mmdets_bbox", [os.path.join(model_path, "mmdets", "bbox")], folder_paths.supported_pt_extensions) | |
add_folder_path_and_extensions("mmdets_segm", [os.path.join(model_path, "mmdets", "segm")], folder_paths.supported_pt_extensions) | |
add_folder_path_and_extensions("mmdets", [os.path.join(model_path, "mmdets")], folder_paths.supported_pt_extensions) | |
add_folder_path_and_extensions("sams", [os.path.join(model_path, "sams")], folder_paths.supported_pt_extensions) | |
add_folder_path_and_extensions("onnx", [os.path.join(model_path, "onnx")], {'.onnx'}) | |
# Nodes | |
class ONNXDetectorProvider: | |
def INPUT_TYPES(s): | |
return {"required": {"model_name": (folder_paths.get_filename_list("onnx"), )}} | |
RETURN_TYPES = ("BBOX_DETECTOR", ) | |
FUNCTION = "load_onnx" | |
CATEGORY = "ImpactPack" | |
def load_onnx(self, model_name): | |
model = folder_paths.get_full_path("onnx", model_name) | |
return (core.ONNXDetector(model), ) | |
class CLIPSegDetectorProvider: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"text": ("STRING", {"multiline": False}), | |
"blur": ("FLOAT", {"min": 0, "max": 15, "step": 0.1, "default": 7}), | |
"threshold": ("FLOAT", {"min": 0, "max": 1, "step": 0.05, "default": 0.4}), | |
"dilation_factor": ("INT", {"min": 0, "max": 10, "step": 1, "default": 4}), | |
} | |
} | |
RETURN_TYPES = ("BBOX_DETECTOR", ) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Util" | |
def doit(self, text, blur, threshold, dilation_factor): | |
if "CLIPSeg" in nodes.NODE_CLASS_MAPPINGS: | |
return (core.BBoxDetectorBasedOnCLIPSeg(text, blur, threshold, dilation_factor), ) | |
else: | |
print("[ERROR] CLIPSegToBboxDetector: CLIPSeg custom node isn't installed. You must install biegert/ComfyUI-CLIPSeg extension to use this node.") | |
class SAMLoader: | |
def INPUT_TYPES(cls): | |
models = [x for x in folder_paths.get_filename_list("sams") if 'hq' not in x] | |
return { | |
"required": { | |
"model_name": (models + ['ESAM'], ), | |
"device_mode": (["AUTO", "Prefer GPU", "CPU"],), | |
} | |
} | |
RETURN_TYPES = ("SAM_MODEL", ) | |
FUNCTION = "load_model" | |
CATEGORY = "ImpactPack" | |
def load_model(self, model_name, device_mode="auto"): | |
if model_name == 'ESAM': | |
if 'ESAM_ModelLoader_Zho' not in nodes.NODE_CLASS_MAPPINGS: | |
try_install_custom_node('https://github.com/ZHO-ZHO-ZHO/ComfyUI-YoloWorld-EfficientSAM', | |
"To use 'ESAM' model, 'ComfyUI-YoloWorld-EfficientSAM' extension is required.") | |
raise Exception("'ComfyUI-YoloWorld-EfficientSAM' node isn't installed.") | |
esam_loader = nodes.NODE_CLASS_MAPPINGS['ESAM_ModelLoader_Zho']() | |
if device_mode == 'CPU': | |
esam = esam_loader.load_esam_model('CPU')[0] | |
else: | |
device_mode = 'CUDA' | |
esam = esam_loader.load_esam_model('CUDA')[0] | |
sam_obj = core.ESAMWrapper(esam, device_mode) | |
esam.sam_wrapper = sam_obj | |
print(f"Loads EfficientSAM model: (device:{device_mode})") | |
return (esam, ) | |
modelname = folder_paths.get_full_path("sams", model_name) | |
if 'vit_h' in model_name: | |
model_kind = 'vit_h' | |
elif 'vit_l' in model_name: | |
model_kind = 'vit_l' | |
else: | |
model_kind = 'vit_b' | |
sam = sam_model_registry[model_kind](checkpoint=modelname) | |
size = os.path.getsize(modelname) | |
safe_to = core.SafeToGPU(size) | |
# Unless user explicitly wants to use CPU, we use GPU | |
device = comfy.model_management.get_torch_device() if device_mode == "Prefer GPU" else "CPU" | |
if device_mode == "Prefer GPU": | |
safe_to.to_device(sam, device) | |
is_auto_mode = device_mode == "AUTO" | |
sam_obj = core.SAMWrapper(sam, is_auto_mode=is_auto_mode, safe_to_gpu=safe_to) | |
sam.sam_wrapper = sam_obj | |
print(f"Loads SAM model: {modelname} (device:{device_mode})") | |
return (sam, ) | |
class ONNXDetectorForEach: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"onnx_detector": ("ONNX_DETECTOR",), | |
"image": ("IMAGE",), | |
"threshold": ("FLOAT", {"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"dilation": ("INT", {"default": 10, "min": -512, "max": 512, "step": 1}), | |
"crop_factor": ("FLOAT", {"default": 1.0, "min": 0.5, "max": 100, "step": 0.1}), | |
"drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}), | |
} | |
} | |
RETURN_TYPES = ("SEGS", ) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Detector" | |
OUTPUT_NODE = True | |
def doit(self, onnx_detector, image, threshold, dilation, crop_factor, drop_size): | |
segs = onnx_detector.detect(image, threshold, dilation, crop_factor, drop_size) | |
return (segs, ) | |
class DetailerForEach: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"image": ("IMAGE", ), | |
"segs": ("SEGS", ), | |
"model": ("MODEL",), | |
"clip": ("CLIP",), | |
"vae": ("VAE",), | |
"guide_size": ("FLOAT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"guide_size_for": ("BOOLEAN", {"default": True, "label_on": "bbox", "label_off": "crop_region"}), | |
"max_size": ("FLOAT", {"default": 1024, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), | |
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,), | |
"scheduler": (core.SCHEDULERS,), | |
"positive": ("CONDITIONING",), | |
"negative": ("CONDITIONING",), | |
"denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}), | |
"feather": ("INT", {"default": 5, "min": 0, "max": 100, "step": 1}), | |
"noise_mask": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}), | |
"force_inpaint": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}), | |
"wildcard": ("STRING", {"multiline": True, "dynamicPrompts": False}), | |
"cycle": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}), | |
}, | |
"optional": { | |
"detailer_hook": ("DETAILER_HOOK",), | |
"inpaint_model": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}), | |
"noise_mask_feather": ("INT", {"default": 20, "min": 0, "max": 100, "step": 1}), | |
"scheduler_func_opt": ("SCHEDULER_FUNC",), | |
} | |
} | |
RETURN_TYPES = ("IMAGE", ) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Detailer" | |
def do_detail(image, segs, model, clip, vae, guide_size, guide_size_for_bbox, max_size, seed, steps, cfg, sampler_name, scheduler, | |
positive, negative, denoise, feather, noise_mask, force_inpaint, wildcard_opt=None, detailer_hook=None, | |
refiner_ratio=None, refiner_model=None, refiner_clip=None, refiner_positive=None, refiner_negative=None, | |
cycle=1, inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None): | |
if len(image) > 1: | |
raise Exception('[Impact Pack] ERROR: DetailerForEach does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.') | |
image = image.clone() | |
enhanced_alpha_list = [] | |
enhanced_list = [] | |
cropped_list = [] | |
cnet_pil_list = [] | |
segs = core.segs_scale_match(segs, image.shape) | |
new_segs = [] | |
wildcard_concat_mode = None | |
if wildcard_opt is not None: | |
if wildcard_opt.startswith('[CONCAT]'): | |
wildcard_concat_mode = 'concat' | |
wildcard_opt = wildcard_opt[8:] | |
wmode, wildcard_chooser = wildcards.process_wildcard_for_segs(wildcard_opt) | |
else: | |
wmode, wildcard_chooser = None, None | |
if wmode in ['ASC', 'DSC']: | |
if wmode == 'ASC': | |
ordered_segs = sorted(segs[1], key=lambda x: (x.bbox[0], x.bbox[1])) | |
else: | |
ordered_segs = sorted(segs[1], key=lambda x: (x.bbox[0], x.bbox[1]), reverse=True) | |
else: | |
ordered_segs = segs[1] | |
for i, seg in enumerate(ordered_segs): | |
cropped_image = crop_ndarray4(image.cpu().numpy(), seg.crop_region) # Never use seg.cropped_image to handle overlapping area | |
cropped_image = to_tensor(cropped_image) | |
mask = to_tensor(seg.cropped_mask) | |
mask = tensor_gaussian_blur_mask(mask, feather) | |
is_mask_all_zeros = (seg.cropped_mask == 0).all().item() | |
if is_mask_all_zeros: | |
print(f"Detailer: segment skip [empty mask]") | |
continue | |
if noise_mask: | |
cropped_mask = seg.cropped_mask | |
else: | |
cropped_mask = None | |
if wildcard_chooser is not None and wmode != "LAB": | |
seg_seed, wildcard_item = wildcard_chooser.get(seg) | |
elif wildcard_chooser is not None and wmode == "LAB": | |
seg_seed, wildcard_item = None, wildcard_chooser.get(seg) | |
else: | |
seg_seed, wildcard_item = None, None | |
seg_seed = seed + i if seg_seed is None else seg_seed | |
cropped_positive = [ | |
[condition, { | |
k: core.crop_condition_mask(v, image, seg.crop_region) if k == "mask" else v | |
for k, v in details.items() | |
}] | |
for condition, details in positive | |
] | |
if not isinstance(negative, str): | |
cropped_negative = [ | |
[condition, { | |
k: core.crop_condition_mask(v, image, seg.crop_region) if k == "mask" else v | |
for k, v in details.items() | |
}] | |
for condition, details in negative | |
] | |
else: | |
# Negative Conditioning is placeholder such as FLUX.1 | |
cropped_negative = negative | |
enhanced_image, cnet_pils = core.enhance_detail(cropped_image, model, clip, vae, guide_size, guide_size_for_bbox, max_size, | |
seg.bbox, seg_seed, steps, cfg, sampler_name, scheduler, | |
cropped_positive, cropped_negative, denoise, cropped_mask, force_inpaint, | |
wildcard_opt=wildcard_item, wildcard_opt_concat_mode=wildcard_concat_mode, | |
detailer_hook=detailer_hook, | |
refiner_ratio=refiner_ratio, refiner_model=refiner_model, | |
refiner_clip=refiner_clip, refiner_positive=refiner_positive, | |
refiner_negative=refiner_negative, control_net_wrapper=seg.control_net_wrapper, | |
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, | |
scheduler_func=scheduler_func_opt) | |
if cnet_pils is not None: | |
cnet_pil_list.extend(cnet_pils) | |
if not (enhanced_image is None): | |
# don't latent composite-> converting to latent caused poor quality | |
# use image paste | |
image = image.cpu() | |
enhanced_image = enhanced_image.cpu() | |
tensor_paste(image, enhanced_image, (seg.crop_region[0], seg.crop_region[1]), mask) | |
enhanced_list.append(enhanced_image) | |
if detailer_hook is not None: | |
image = detailer_hook.post_paste(image) | |
if not (enhanced_image is None): | |
# Convert enhanced_pil_alpha to RGBA mode | |
enhanced_image_alpha = tensor_convert_rgba(enhanced_image) | |
new_seg_image = enhanced_image.numpy() # alpha should not be applied to seg_image | |
# Apply the mask | |
mask = tensor_resize(mask, *tensor_get_size(enhanced_image)) | |
tensor_putalpha(enhanced_image_alpha, mask) | |
enhanced_alpha_list.append(enhanced_image_alpha) | |
else: | |
new_seg_image = None | |
cropped_list.append(cropped_image) | |
new_seg = SEG(new_seg_image, seg.cropped_mask, seg.confidence, seg.crop_region, seg.bbox, seg.label, seg.control_net_wrapper) | |
new_segs.append(new_seg) | |
image_tensor = tensor_convert_rgb(image) | |
cropped_list.sort(key=lambda x: x.shape, reverse=True) | |
enhanced_list.sort(key=lambda x: x.shape, reverse=True) | |
enhanced_alpha_list.sort(key=lambda x: x.shape, reverse=True) | |
return image_tensor, cropped_list, enhanced_list, enhanced_alpha_list, cnet_pil_list, (segs[0], new_segs) | |
def doit(self, image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, | |
scheduler, positive, negative, denoise, feather, noise_mask, force_inpaint, wildcard, cycle=1, | |
detailer_hook=None, inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None): | |
enhanced_img, *_ = \ | |
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, | |
cfg, sampler_name, scheduler, positive, negative, denoise, feather, noise_mask, | |
force_inpaint, wildcard, detailer_hook, | |
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt) | |
return (enhanced_img, ) | |
class DetailerForEachPipe: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"image": ("IMAGE", ), | |
"segs": ("SEGS", ), | |
"guide_size": ("FLOAT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"guide_size_for": ("BOOLEAN", {"default": True, "label_on": "bbox", "label_off": "crop_region"}), | |
"max_size": ("FLOAT", {"default": 1024, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), | |
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,), | |
"scheduler": (core.SCHEDULERS,), | |
"denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}), | |
"feather": ("INT", {"default": 5, "min": 0, "max": 100, "step": 1}), | |
"noise_mask": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}), | |
"force_inpaint": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}), | |
"basic_pipe": ("BASIC_PIPE", ), | |
"wildcard": ("STRING", {"multiline": True, "dynamicPrompts": False}), | |
"refiner_ratio": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0}), | |
"cycle": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}), | |
}, | |
"optional": { | |
"detailer_hook": ("DETAILER_HOOK",), | |
"refiner_basic_pipe_opt": ("BASIC_PIPE",), | |
"inpaint_model": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}), | |
"noise_mask_feather": ("INT", {"default": 20, "min": 0, "max": 100, "step": 1}), | |
"scheduler_func_opt": ("SCHEDULER_FUNC",), | |
} | |
} | |
RETURN_TYPES = ("IMAGE", "SEGS", "BASIC_PIPE", "IMAGE") | |
RETURN_NAMES = ("image", "segs", "basic_pipe", "cnet_images") | |
OUTPUT_IS_LIST = (False, False, False, True) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Detailer" | |
def doit(self, image, segs, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler, | |
denoise, feather, noise_mask, force_inpaint, basic_pipe, wildcard, | |
refiner_ratio=None, detailer_hook=None, refiner_basic_pipe_opt=None, | |
cycle=1, inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None): | |
if len(image) > 1: | |
raise Exception('[Impact Pack] ERROR: DetailerForEach does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.') | |
model, clip, vae, positive, negative = basic_pipe | |
if refiner_basic_pipe_opt is None: | |
refiner_model, refiner_clip, refiner_positive, refiner_negative = None, None, None, None | |
else: | |
refiner_model, refiner_clip, _, refiner_positive, refiner_negative = refiner_basic_pipe_opt | |
enhanced_img, cropped, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list, new_segs = \ | |
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg, | |
sampler_name, scheduler, positive, negative, denoise, feather, noise_mask, | |
force_inpaint, wildcard, detailer_hook, | |
refiner_ratio=refiner_ratio, refiner_model=refiner_model, | |
refiner_clip=refiner_clip, refiner_positive=refiner_positive, refiner_negative=refiner_negative, | |
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt) | |
# set fallback image | |
if len(cnet_pil_list) == 0: | |
cnet_pil_list = [empty_pil_tensor()] | |
return enhanced_img, new_segs, basic_pipe, cnet_pil_list | |
class FaceDetailer: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"image": ("IMAGE", ), | |
"model": ("MODEL",), | |
"clip": ("CLIP",), | |
"vae": ("VAE",), | |
"guide_size": ("FLOAT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"guide_size_for": ("BOOLEAN", {"default": True, "label_on": "bbox", "label_off": "crop_region"}), | |
"max_size": ("FLOAT", {"default": 1024, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), | |
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,), | |
"scheduler": (core.SCHEDULERS,), | |
"positive": ("CONDITIONING",), | |
"negative": ("CONDITIONING",), | |
"denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}), | |
"feather": ("INT", {"default": 5, "min": 0, "max": 100, "step": 1}), | |
"noise_mask": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}), | |
"force_inpaint": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}), | |
"bbox_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"bbox_dilation": ("INT", {"default": 10, "min": -512, "max": 512, "step": 1}), | |
"bbox_crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 10, "step": 0.1}), | |
"sam_detection_hint": (["center-1", "horizontal-2", "vertical-2", "rect-4", "diamond-4", "mask-area", "mask-points", "mask-point-bbox", "none"],), | |
"sam_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}), | |
"sam_threshold": ("FLOAT", {"default": 0.93, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"sam_bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}), | |
"sam_mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"sam_mask_hint_use_negative": (["False", "Small", "Outter"],), | |
"drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}), | |
"bbox_detector": ("BBOX_DETECTOR", ), | |
"wildcard": ("STRING", {"multiline": True, "dynamicPrompts": False}), | |
"cycle": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}), | |
}, | |
"optional": { | |
"sam_model_opt": ("SAM_MODEL", ), | |
"segm_detector_opt": ("SEGM_DETECTOR", ), | |
"detailer_hook": ("DETAILER_HOOK",), | |
"inpaint_model": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}), | |
"noise_mask_feather": ("INT", {"default": 20, "min": 0, "max": 100, "step": 1}), | |
"scheduler_func_opt": ("SCHEDULER_FUNC",), | |
}} | |
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "MASK", "DETAILER_PIPE", "IMAGE") | |
RETURN_NAMES = ("image", "cropped_refined", "cropped_enhanced_alpha", "mask", "detailer_pipe", "cnet_images") | |
OUTPUT_IS_LIST = (False, True, True, False, False, True) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Simple" | |
def enhance_face(image, model, clip, vae, guide_size, guide_size_for_bbox, max_size, seed, steps, cfg, sampler_name, scheduler, | |
positive, negative, denoise, feather, noise_mask, force_inpaint, | |
bbox_threshold, bbox_dilation, bbox_crop_factor, | |
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold, | |
sam_mask_hint_use_negative, drop_size, | |
bbox_detector, segm_detector=None, sam_model_opt=None, wildcard_opt=None, detailer_hook=None, | |
refiner_ratio=None, refiner_model=None, refiner_clip=None, refiner_positive=None, refiner_negative=None, cycle=1, | |
inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None): | |
# make default prompt as 'face' if empty prompt for CLIPSeg | |
bbox_detector.setAux('face') | |
segs = bbox_detector.detect(image, bbox_threshold, bbox_dilation, bbox_crop_factor, drop_size, detailer_hook=detailer_hook) | |
bbox_detector.setAux(None) | |
# bbox + sam combination | |
if sam_model_opt is not None: | |
sam_mask = core.make_sam_mask(sam_model_opt, segs, image, sam_detection_hint, sam_dilation, | |
sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold, | |
sam_mask_hint_use_negative, ) | |
segs = core.segs_bitwise_and_mask(segs, sam_mask) | |
elif segm_detector is not None: | |
segm_segs = segm_detector.detect(image, bbox_threshold, bbox_dilation, bbox_crop_factor, drop_size) | |
if (hasattr(segm_detector, 'override_bbox_by_segm') and segm_detector.override_bbox_by_segm and | |
not (detailer_hook is not None and not hasattr(detailer_hook, 'override_bbox_by_segm'))): | |
segs = segm_segs | |
else: | |
segm_mask = core.segs_to_combined_mask(segm_segs) | |
segs = core.segs_bitwise_and_mask(segs, segm_mask) | |
if len(segs[1]) > 0: | |
enhanced_img, _, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list, new_segs = \ | |
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for_bbox, max_size, seed, steps, cfg, | |
sampler_name, scheduler, positive, negative, denoise, feather, noise_mask, | |
force_inpaint, wildcard_opt, detailer_hook, | |
refiner_ratio=refiner_ratio, refiner_model=refiner_model, | |
refiner_clip=refiner_clip, refiner_positive=refiner_positive, | |
refiner_negative=refiner_negative, | |
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt) | |
else: | |
enhanced_img = image | |
cropped_enhanced = [] | |
cropped_enhanced_alpha = [] | |
cnet_pil_list = [] | |
# Mask Generator | |
mask = core.segs_to_combined_mask(segs) | |
if len(cropped_enhanced) == 0: | |
cropped_enhanced = [empty_pil_tensor()] | |
if len(cropped_enhanced_alpha) == 0: | |
cropped_enhanced_alpha = [empty_pil_tensor()] | |
if len(cnet_pil_list) == 0: | |
cnet_pil_list = [empty_pil_tensor()] | |
return enhanced_img, cropped_enhanced, cropped_enhanced_alpha, mask, cnet_pil_list | |
def doit(self, image, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler, | |
positive, negative, denoise, feather, noise_mask, force_inpaint, | |
bbox_threshold, bbox_dilation, bbox_crop_factor, | |
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold, | |
sam_mask_hint_use_negative, drop_size, bbox_detector, wildcard, cycle=1, | |
sam_model_opt=None, segm_detector_opt=None, detailer_hook=None, inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None): | |
result_img = None | |
result_mask = None | |
result_cropped_enhanced = [] | |
result_cropped_enhanced_alpha = [] | |
result_cnet_images = [] | |
if len(image) > 1: | |
print(f"[Impact Pack] WARN: FaceDetailer is not a node designed for video detailing. If you intend to perform video detailing, please use Detailer For AnimateDiff.") | |
for i, single_image in enumerate(image): | |
enhanced_img, cropped_enhanced, cropped_enhanced_alpha, mask, cnet_pil_list = FaceDetailer.enhance_face( | |
single_image.unsqueeze(0), model, clip, vae, guide_size, guide_size_for, max_size, seed + i, steps, cfg, sampler_name, scheduler, | |
positive, negative, denoise, feather, noise_mask, force_inpaint, | |
bbox_threshold, bbox_dilation, bbox_crop_factor, | |
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold, | |
sam_mask_hint_use_negative, drop_size, bbox_detector, segm_detector_opt, sam_model_opt, wildcard, detailer_hook, | |
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt) | |
result_img = torch.cat((result_img, enhanced_img), dim=0) if result_img is not None else enhanced_img | |
result_mask = torch.cat((result_mask, mask), dim=0) if result_mask is not None else mask | |
result_cropped_enhanced.extend(cropped_enhanced) | |
result_cropped_enhanced_alpha.extend(cropped_enhanced_alpha) | |
result_cnet_images.extend(cnet_pil_list) | |
pipe = (model, clip, vae, positive, negative, wildcard, bbox_detector, segm_detector_opt, sam_model_opt, detailer_hook, None, None, None, None) | |
return result_img, result_cropped_enhanced, result_cropped_enhanced_alpha, result_mask, pipe, result_cnet_images | |
class LatentPixelScale: | |
upscale_methods = ["nearest-exact", "bilinear", "lanczos", "area"] | |
def INPUT_TYPES(s): | |
return {"required": { | |
"samples": ("LATENT", ), | |
"scale_method": (s.upscale_methods,), | |
"scale_factor": ("FLOAT", {"default": 1.5, "min": 0.1, "max": 10000, "step": 0.1}), | |
"vae": ("VAE", ), | |
"use_tiled_vae": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}), | |
}, | |
"optional": { | |
"upscale_model_opt": ("UPSCALE_MODEL", ), | |
} | |
} | |
RETURN_TYPES = ("LATENT", "IMAGE") | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Upscale" | |
def doit(self, samples, scale_method, scale_factor, vae, use_tiled_vae, upscale_model_opt=None): | |
if upscale_model_opt is None: | |
latimg = core.latent_upscale_on_pixel_space2(samples, scale_method, scale_factor, vae, use_tile=use_tiled_vae) | |
else: | |
latimg = core.latent_upscale_on_pixel_space_with_model2(samples, scale_method, upscale_model_opt, scale_factor, vae, use_tile=use_tiled_vae) | |
return latimg | |
class NoiseInjectionDetailerHookProvider: | |
schedules = ["skip_start", "from_start"] | |
def INPUT_TYPES(s): | |
return {"required": { | |
"schedule_for_cycle": (s.schedules,), | |
"source": (["CPU", "GPU"],), | |
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"start_strength": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 200.0, "step": 0.01}), | |
"end_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 200.0, "step": 0.01}), | |
}, | |
} | |
RETURN_TYPES = ("DETAILER_HOOK",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Detailer" | |
def doit(self, schedule_for_cycle, source, seed, start_strength, end_strength): | |
try: | |
hook = hooks.InjectNoiseHookForDetailer(source, seed, start_strength, end_strength, | |
from_start=('from_start' in schedule_for_cycle)) | |
return (hook, ) | |
except Exception as e: | |
print("[ERROR] NoiseInjectionDetailerHookProvider: 'ComfyUI Noise' custom node isn't installed. You must install 'BlenderNeko/ComfyUI Noise' extension to use this node.") | |
print(f"\t{e}") | |
pass | |
# class CustomNoiseDetailerHookProvider: | |
# @classmethod | |
# def INPUT_TYPES(s): | |
# return {"required": { | |
# "noise": ("NOISE",)}, | |
# } | |
# | |
# RETURN_TYPES = ("DETAILER_HOOK",) | |
# FUNCTION = "doit" | |
# | |
# CATEGORY = "ImpactPack/Detailer" | |
# | |
# def doit(self, noise): | |
# hook = hooks.CustomNoiseDetailerHookProvider(noise) | |
# return (hook, ) | |
class VariationNoiseDetailerHookProvider: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01})} | |
} | |
RETURN_TYPES = ("DETAILER_HOOK",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Detailer" | |
def doit(self, seed, strength): | |
hook = hooks.VariationNoiseDetailerHookProvider(seed, strength) | |
return (hook, ) | |
class UnsamplerDetailerHookProvider: | |
schedules = ["skip_start", "from_start"] | |
def INPUT_TYPES(s): | |
return {"required": | |
{"model": ("MODEL",), | |
"steps": ("INT", {"default": 25, "min": 1, "max": 10000}), | |
"start_end_at_step": ("INT", {"default": 21, "min": 0, "max": 10000}), | |
"end_end_at_step": ("INT", {"default": 24, "min": 0, "max": 10000}), | |
"cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}), | |
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), | |
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), | |
"normalize": (["disable", "enable"], ), | |
"positive": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
"schedule_for_cycle": (s.schedules,), | |
}} | |
RETURN_TYPES = ("DETAILER_HOOK",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Detailer" | |
def doit(self, model, steps, start_end_at_step, end_end_at_step, cfg, sampler_name, | |
scheduler, normalize, positive, negative, schedule_for_cycle): | |
try: | |
hook = hooks.UnsamplerDetailerHook(model, steps, start_end_at_step, end_end_at_step, cfg, sampler_name, | |
scheduler, normalize, positive, negative, | |
from_start=('from_start' in schedule_for_cycle)) | |
return (hook, ) | |
except Exception as e: | |
print("[ERROR] UnsamplerDetailerHookProvider: 'ComfyUI Noise' custom node isn't installed. You must install 'BlenderNeko/ComfyUI Noise' extension to use this node.") | |
print(f"\t{e}") | |
pass | |
class DenoiseSchedulerDetailerHookProvider: | |
schedules = ["simple"] | |
def INPUT_TYPES(s): | |
return {"required": { | |
"schedule_for_cycle": (s.schedules,), | |
"target_denoise": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}), | |
}, | |
} | |
RETURN_TYPES = ("DETAILER_HOOK",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Detailer" | |
def doit(self, schedule_for_cycle, target_denoise): | |
hook = hooks.SimpleDetailerDenoiseSchedulerHook(target_denoise) | |
return (hook, ) | |
class CoreMLDetailerHookProvider: | |
def INPUT_TYPES(s): | |
return {"required": {"mode": (["512x512", "768x768", "512x768", "768x512"], )}, } | |
RETURN_TYPES = ("DETAILER_HOOK",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Detailer" | |
def doit(self, mode): | |
hook = hooks.CoreMLHook(mode) | |
return (hook, ) | |
class CfgScheduleHookProvider: | |
schedules = ["simple"] | |
def INPUT_TYPES(s): | |
return {"required": { | |
"schedule_for_iteration": (s.schedules,), | |
"target_cfg": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0}), | |
}, | |
} | |
RETURN_TYPES = ("PK_HOOK",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Upscale" | |
def doit(self, schedule_for_iteration, target_cfg): | |
hook = None | |
if schedule_for_iteration == "simple": | |
hook = hooks.SimpleCfgScheduleHook(target_cfg) | |
return (hook, ) | |
class UnsamplerHookProvider: | |
schedules = ["simple"] | |
def INPUT_TYPES(s): | |
return {"required": | |
{"model": ("MODEL",), | |
"steps": ("INT", {"default": 25, "min": 1, "max": 10000}), | |
"start_end_at_step": ("INT", {"default": 21, "min": 0, "max": 10000}), | |
"end_end_at_step": ("INT", {"default": 24, "min": 0, "max": 10000}), | |
"cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}), | |
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), | |
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), | |
"normalize": (["disable", "enable"], ), | |
"positive": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
"schedule_for_iteration": (s.schedules,), | |
}} | |
RETURN_TYPES = ("PK_HOOK",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Upscale" | |
def doit(self, model, steps, start_end_at_step, end_end_at_step, cfg, sampler_name, | |
scheduler, normalize, positive, negative, schedule_for_iteration): | |
try: | |
hook = None | |
if schedule_for_iteration == "simple": | |
hook = hooks.UnsamplerHook(model, steps, start_end_at_step, end_end_at_step, cfg, sampler_name, | |
scheduler, normalize, positive, negative) | |
return (hook, ) | |
except Exception as e: | |
print("[ERROR] UnsamplerHookProvider: 'ComfyUI Noise' custom node isn't installed. You must install 'BlenderNeko/ComfyUI Noise' extension to use this node.") | |
print(f"\t{e}") | |
pass | |
class NoiseInjectionHookProvider: | |
schedules = ["simple"] | |
def INPUT_TYPES(s): | |
return {"required": { | |
"schedule_for_iteration": (s.schedules,), | |
"source": (["CPU", "GPU"],), | |
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"start_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 200.0, "step": 0.01}), | |
"end_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 200.0, "step": 0.01}), | |
}, | |
} | |
RETURN_TYPES = ("PK_HOOK",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Upscale" | |
def doit(self, schedule_for_iteration, source, seed, start_strength, end_strength): | |
try: | |
hook = None | |
if schedule_for_iteration == "simple": | |
hook = hooks.InjectNoiseHook(source, seed, start_strength, end_strength) | |
return (hook, ) | |
except Exception as e: | |
print("[ERROR] NoiseInjectionHookProvider: 'ComfyUI Noise' custom node isn't installed. You must install 'BlenderNeko/ComfyUI Noise' extension to use this node.") | |
print(f"\t{e}") | |
pass | |
class DenoiseScheduleHookProvider: | |
schedules = ["simple"] | |
def INPUT_TYPES(s): | |
return {"required": { | |
"schedule_for_iteration": (s.schedules,), | |
"target_denoise": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01}), | |
}, | |
} | |
RETURN_TYPES = ("PK_HOOK",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Upscale" | |
def doit(self, schedule_for_iteration, target_denoise): | |
hook = None | |
if schedule_for_iteration == "simple": | |
hook = hooks.SimpleDenoiseScheduleHook(target_denoise) | |
return (hook, ) | |
class StepsScheduleHookProvider: | |
schedules = ["simple"] | |
def INPUT_TYPES(s): | |
return {"required": { | |
"schedule_for_iteration": (s.schedules,), | |
"target_steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
}, | |
} | |
RETURN_TYPES = ("PK_HOOK",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Upscale" | |
def doit(self, schedule_for_iteration, target_steps): | |
hook = None | |
if schedule_for_iteration == "simple": | |
hook = hooks.SimpleStepsScheduleHook(target_steps) | |
return (hook, ) | |
class DetailerHookCombine: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"hook1": ("DETAILER_HOOK",), | |
"hook2": ("DETAILER_HOOK",), | |
}, | |
} | |
RETURN_TYPES = ("DETAILER_HOOK",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Upscale" | |
def doit(self, hook1, hook2): | |
hook = hooks.DetailerHookCombine(hook1, hook2) | |
return (hook, ) | |
class PixelKSampleHookCombine: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"hook1": ("PK_HOOK",), | |
"hook2": ("PK_HOOK",), | |
}, | |
} | |
RETURN_TYPES = ("PK_HOOK",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Upscale" | |
def doit(self, hook1, hook2): | |
hook = hooks.PixelKSampleHookCombine(hook1, hook2) | |
return (hook, ) | |
class PixelTiledKSampleUpscalerProvider: | |
upscale_methods = ["nearest-exact", "bilinear", "lanczos", "area"] | |
def INPUT_TYPES(s): | |
return {"required": { | |
"scale_method": (s.upscale_methods,), | |
"model": ("MODEL",), | |
"vae": ("VAE",), | |
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), | |
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), | |
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), | |
"positive": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"tile_width": ("INT", {"default": 512, "min": 320, "max": MAX_RESOLUTION, "step": 64}), | |
"tile_height": ("INT", {"default": 512, "min": 320, "max": MAX_RESOLUTION, "step": 64}), | |
"tiling_strategy": (["random", "padded", 'simple'], ), | |
}, | |
"optional": { | |
"upscale_model_opt": ("UPSCALE_MODEL", ), | |
"pk_hook_opt": ("PK_HOOK", ), | |
"tile_cnet_opt": ("CONTROL_NET", ), | |
"tile_cnet_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
} | |
} | |
RETURN_TYPES = ("UPSCALER",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Upscale" | |
def doit(self, scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise, tile_width, tile_height, tiling_strategy, upscale_model_opt=None, | |
pk_hook_opt=None, tile_cnet_opt=None, tile_cnet_strength=1.0): | |
if "BNK_TiledKSampler" in nodes.NODE_CLASS_MAPPINGS: | |
upscaler = core.PixelTiledKSampleUpscaler(scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise, | |
tile_width, tile_height, tiling_strategy, upscale_model_opt, pk_hook_opt, tile_cnet_opt, | |
tile_size=max(tile_width, tile_height), tile_cnet_strength=tile_cnet_strength) | |
return (upscaler, ) | |
else: | |
print("[ERROR] PixelTiledKSampleUpscalerProvider: ComfyUI_TiledKSampler custom node isn't installed. You must install BlenderNeko/ComfyUI_TiledKSampler extension to use this node.") | |
class PixelTiledKSampleUpscalerProviderPipe: | |
upscale_methods = ["nearest-exact", "bilinear", "lanczos", "area"] | |
def INPUT_TYPES(s): | |
return {"required": { | |
"scale_method": (s.upscale_methods,), | |
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), | |
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), | |
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), | |
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"tile_width": ("INT", {"default": 512, "min": 320, "max": MAX_RESOLUTION, "step": 64}), | |
"tile_height": ("INT", {"default": 512, "min": 320, "max": MAX_RESOLUTION, "step": 64}), | |
"tiling_strategy": (["random", "padded", 'simple'], ), | |
"basic_pipe": ("BASIC_PIPE",) | |
}, | |
"optional": { | |
"upscale_model_opt": ("UPSCALE_MODEL", ), | |
"pk_hook_opt": ("PK_HOOK", ), | |
"tile_cnet_opt": ("CONTROL_NET", ), | |
"tile_cnet_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
} | |
} | |
RETURN_TYPES = ("UPSCALER",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Upscale" | |
def doit(self, scale_method, seed, steps, cfg, sampler_name, scheduler, denoise, tile_width, tile_height, tiling_strategy, basic_pipe, upscale_model_opt=None, pk_hook_opt=None, | |
tile_cnet_opt=None, tile_cnet_strength=1.0): | |
if "BNK_TiledKSampler" in nodes.NODE_CLASS_MAPPINGS: | |
model, _, vae, positive, negative = basic_pipe | |
upscaler = core.PixelTiledKSampleUpscaler(scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise, | |
tile_width, tile_height, tiling_strategy, upscale_model_opt, pk_hook_opt, tile_cnet_opt, | |
tile_size=max(tile_width, tile_height), tile_cnet_strength=tile_cnet_strength) | |
return (upscaler, ) | |
else: | |
print("[ERROR] PixelTiledKSampleUpscalerProviderPipe: ComfyUI_TiledKSampler custom node isn't installed. You must install BlenderNeko/ComfyUI_TiledKSampler extension to use this node.") | |
class PixelKSampleUpscalerProvider: | |
upscale_methods = ["nearest-exact", "bilinear", "lanczos", "area"] | |
def INPUT_TYPES(s): | |
return {"required": { | |
"scale_method": (s.upscale_methods,), | |
"model": ("MODEL",), | |
"vae": ("VAE",), | |
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), | |
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), | |
"scheduler": (core.SCHEDULERS, ), | |
"positive": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"use_tiled_vae": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}), | |
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64}), | |
}, | |
"optional": { | |
"upscale_model_opt": ("UPSCALE_MODEL", ), | |
"pk_hook_opt": ("PK_HOOK", ), | |
"scheduler_func_opt": ("SCHEDULER_FUNC",), | |
} | |
} | |
RETURN_TYPES = ("UPSCALER",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Upscale" | |
def doit(self, scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise, | |
use_tiled_vae, upscale_model_opt=None, pk_hook_opt=None, tile_size=512, scheduler_func_opt=None): | |
upscaler = core.PixelKSampleUpscaler(scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, | |
positive, negative, denoise, use_tiled_vae, upscale_model_opt, pk_hook_opt, | |
tile_size=tile_size, scheduler_func=scheduler_func_opt) | |
return (upscaler, ) | |
class PixelKSampleUpscalerProviderPipe(PixelKSampleUpscalerProvider): | |
upscale_methods = ["nearest-exact", "bilinear", "lanczos", "area"] | |
def INPUT_TYPES(s): | |
return {"required": { | |
"scale_method": (s.upscale_methods,), | |
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), | |
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), | |
"scheduler": (core.SCHEDULERS, ), | |
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"use_tiled_vae": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}), | |
"basic_pipe": ("BASIC_PIPE",), | |
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64}), | |
}, | |
"optional": { | |
"upscale_model_opt": ("UPSCALE_MODEL", ), | |
"pk_hook_opt": ("PK_HOOK", ), | |
"scheduler_func_opt": ("SCHEDULER_FUNC",), | |
"tile_cnet_opt": ("CONTROL_NET", ), | |
"tile_cnet_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
} | |
} | |
RETURN_TYPES = ("UPSCALER",) | |
FUNCTION = "doit_pipe" | |
CATEGORY = "ImpactPack/Upscale" | |
def doit_pipe(self, scale_method, seed, steps, cfg, sampler_name, scheduler, denoise, | |
use_tiled_vae, basic_pipe, upscale_model_opt=None, pk_hook_opt=None, | |
tile_size=512, scheduler_func_opt=None, tile_cnet_opt=None, tile_cnet_strength=1.0): | |
model, _, vae, positive, negative = basic_pipe | |
upscaler = core.PixelKSampleUpscaler(scale_method, model, vae, seed, steps, cfg, sampler_name, scheduler, | |
positive, negative, denoise, use_tiled_vae, upscale_model_opt, pk_hook_opt, | |
tile_size=tile_size, scheduler_func=scheduler_func_opt, | |
tile_cnet_opt=tile_cnet_opt, tile_cnet_strength=tile_cnet_strength) | |
return (upscaler, ) | |
class TwoSamplersForMaskUpscalerProvider: | |
upscale_methods = ["nearest-exact", "bilinear", "lanczos", "area"] | |
def INPUT_TYPES(s): | |
return {"required": { | |
"scale_method": (s.upscale_methods,), | |
"full_sample_schedule": ( | |
["none", "interleave1", "interleave2", "interleave3", | |
"last1", "last2", | |
"interleave1+last1", "interleave2+last1", "interleave3+last1", | |
],), | |
"use_tiled_vae": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}), | |
"base_sampler": ("KSAMPLER", ), | |
"mask_sampler": ("KSAMPLER", ), | |
"mask": ("MASK", ), | |
"vae": ("VAE",), | |
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64}), | |
}, | |
"optional": { | |
"full_sampler_opt": ("KSAMPLER",), | |
"upscale_model_opt": ("UPSCALE_MODEL", ), | |
"pk_hook_base_opt": ("PK_HOOK", ), | |
"pk_hook_mask_opt": ("PK_HOOK", ), | |
"pk_hook_full_opt": ("PK_HOOK", ), | |
} | |
} | |
RETURN_TYPES = ("UPSCALER", ) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Upscale" | |
def doit(self, scale_method, full_sample_schedule, use_tiled_vae, base_sampler, mask_sampler, mask, vae, | |
full_sampler_opt=None, upscale_model_opt=None, | |
pk_hook_base_opt=None, pk_hook_mask_opt=None, pk_hook_full_opt=None, tile_size=512): | |
upscaler = core.TwoSamplersForMaskUpscaler(scale_method, full_sample_schedule, use_tiled_vae, | |
base_sampler, mask_sampler, mask, vae, full_sampler_opt, upscale_model_opt, | |
pk_hook_base_opt, pk_hook_mask_opt, pk_hook_full_opt, tile_size=tile_size) | |
return (upscaler, ) | |
class TwoSamplersForMaskUpscalerProviderPipe: | |
upscale_methods = ["nearest-exact", "bilinear", "lanczos", "area"] | |
def INPUT_TYPES(s): | |
return {"required": { | |
"scale_method": (s.upscale_methods,), | |
"full_sample_schedule": ( | |
["none", "interleave1", "interleave2", "interleave3", | |
"last1", "last2", | |
"interleave1+last1", "interleave2+last1", "interleave3+last1", | |
],), | |
"use_tiled_vae": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}), | |
"base_sampler": ("KSAMPLER", ), | |
"mask_sampler": ("KSAMPLER", ), | |
"mask": ("MASK", ), | |
"basic_pipe": ("BASIC_PIPE",), | |
"tile_size": ("INT", {"default": 512, "min": 320, "max": 4096, "step": 64}), | |
}, | |
"optional": { | |
"full_sampler_opt": ("KSAMPLER",), | |
"upscale_model_opt": ("UPSCALE_MODEL", ), | |
"pk_hook_base_opt": ("PK_HOOK", ), | |
"pk_hook_mask_opt": ("PK_HOOK", ), | |
"pk_hook_full_opt": ("PK_HOOK", ), | |
} | |
} | |
RETURN_TYPES = ("UPSCALER", ) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Upscale" | |
def doit(self, scale_method, full_sample_schedule, use_tiled_vae, base_sampler, mask_sampler, mask, basic_pipe, | |
full_sampler_opt=None, upscale_model_opt=None, | |
pk_hook_base_opt=None, pk_hook_mask_opt=None, pk_hook_full_opt=None, tile_size=512): | |
mask = make_2d_mask(mask) | |
_, _, vae, _, _ = basic_pipe | |
upscaler = core.TwoSamplersForMaskUpscaler(scale_method, full_sample_schedule, use_tiled_vae, | |
base_sampler, mask_sampler, mask, vae, full_sampler_opt, upscale_model_opt, | |
pk_hook_base_opt, pk_hook_mask_opt, pk_hook_full_opt, tile_size=tile_size) | |
return (upscaler, ) | |
class IterativeLatentUpscale: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"samples": ("LATENT", ), | |
"upscale_factor": ("FLOAT", {"default": 1.5, "min": 1, "max": 10000, "step": 0.1}), | |
"steps": ("INT", {"default": 3, "min": 1, "max": 10000, "step": 1}), | |
"temp_prefix": ("STRING", {"default": ""}), | |
"upscaler": ("UPSCALER",), | |
"step_mode": (["simple", "geometric"], {"default": "simple"}) | |
}, | |
"hidden": {"unique_id": "UNIQUE_ID"}, | |
} | |
RETURN_TYPES = ("LATENT", "VAE") | |
RETURN_NAMES = ("latent", "vae") | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Upscale" | |
def doit(self, samples, upscale_factor, steps, temp_prefix, upscaler, step_mode="simple", unique_id=None): | |
w = samples['samples'].shape[3]*8 # image width | |
h = samples['samples'].shape[2]*8 # image height | |
if temp_prefix == "": | |
temp_prefix = None | |
if step_mode == "geometric": | |
upscale_factor_unit = pow(upscale_factor, 1.0/steps) | |
else: # simple | |
upscale_factor_unit = max(0, (upscale_factor - 1.0) / steps) | |
current_latent = samples | |
scale = 1 | |
for i in range(steps-1): | |
if step_mode == "geometric": | |
scale *= upscale_factor_unit | |
else: # simple | |
scale += upscale_factor_unit | |
new_w = w*scale | |
new_h = h*scale | |
core.update_node_status(unique_id, f"{i+1}/{steps} steps | x{scale:.2f}", (i+1)/steps) | |
print(f"IterativeLatentUpscale[{i+1}/{steps}]: {new_w:.1f}x{new_h:.1f} (scale:{scale:.2f}) ") | |
step_info = i, steps | |
current_latent = upscaler.upscale_shape(step_info, current_latent, new_w, new_h, temp_prefix) | |
if scale < upscale_factor: | |
new_w = w*upscale_factor | |
new_h = h*upscale_factor | |
core.update_node_status(unique_id, f"Final step | x{upscale_factor:.2f}", 1.0) | |
print(f"IterativeLatentUpscale[Final]: {new_w:.1f}x{new_h:.1f} (scale:{upscale_factor:.2f}) ") | |
step_info = steps-1, steps | |
current_latent = upscaler.upscale_shape(step_info, current_latent, new_w, new_h, temp_prefix) | |
core.update_node_status(unique_id, "", None) | |
return (current_latent, upscaler.vae) | |
class IterativeImageUpscale: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"pixels": ("IMAGE", ), | |
"upscale_factor": ("FLOAT", {"default": 1.5, "min": 1, "max": 10000, "step": 0.1}), | |
"steps": ("INT", {"default": 3, "min": 1, "max": 10000, "step": 1}), | |
"temp_prefix": ("STRING", {"default": ""}), | |
"upscaler": ("UPSCALER",), | |
"vae": ("VAE",), | |
"step_mode": (["simple", "geometric"], {"default": "simple"}) | |
}, | |
"hidden": {"unique_id": "UNIQUE_ID"} | |
} | |
RETURN_TYPES = ("IMAGE",) | |
RETURN_NAMES = ("image",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Upscale" | |
def doit(self, pixels, upscale_factor, steps, temp_prefix, upscaler, vae, step_mode="simple", unique_id=None): | |
if temp_prefix == "": | |
temp_prefix = None | |
core.update_node_status(unique_id, "VAEEncode (first)", 0) | |
if upscaler.is_tiled: | |
latent = nodes.VAEEncodeTiled().encode(vae, pixels, upscaler.tile_size)[0] | |
else: | |
latent = nodes.VAEEncode().encode(vae, pixels)[0] | |
refined_latent = IterativeLatentUpscale().doit(latent, upscale_factor, steps, temp_prefix, upscaler, step_mode, unique_id) | |
core.update_node_status(unique_id, "VAEDecode (final)", 1.0) | |
if upscaler.is_tiled: | |
pixels = nodes.VAEDecodeTiled().decode(vae, refined_latent[0], upscaler.tile_size)[0] | |
else: | |
pixels = nodes.VAEDecode().decode(vae, refined_latent[0])[0] | |
core.update_node_status(unique_id, "", None) | |
return (pixels, ) | |
class FaceDetailerPipe: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"image": ("IMAGE", ), | |
"detailer_pipe": ("DETAILER_PIPE",), | |
"guide_size": ("FLOAT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"guide_size_for": ("BOOLEAN", {"default": True, "label_on": "bbox", "label_off": "crop_region"}), | |
"max_size": ("FLOAT", {"default": 1024, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), | |
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,), | |
"scheduler": (core.SCHEDULERS,), | |
"denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}), | |
"feather": ("INT", {"default": 5, "min": 0, "max": 100, "step": 1}), | |
"noise_mask": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}), | |
"force_inpaint": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}), | |
"bbox_threshold": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"bbox_dilation": ("INT", {"default": 10, "min": -512, "max": 512, "step": 1}), | |
"bbox_crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 10, "step": 0.1}), | |
"sam_detection_hint": (["center-1", "horizontal-2", "vertical-2", "rect-4", "diamond-4", "mask-area", "mask-points", "mask-point-bbox", "none"],), | |
"sam_dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}), | |
"sam_threshold": ("FLOAT", {"default": 0.93, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"sam_bbox_expansion": ("INT", {"default": 0, "min": 0, "max": 1000, "step": 1}), | |
"sam_mask_hint_threshold": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"sam_mask_hint_use_negative": (["False", "Small", "Outter"],), | |
"drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}), | |
"refiner_ratio": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0}), | |
"cycle": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}), | |
}, | |
"optional": { | |
"inpaint_model": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}), | |
"noise_mask_feather": ("INT", {"default": 20, "min": 0, "max": 100, "step": 1}), | |
"scheduler_func_opt": ("SCHEDULER_FUNC",), | |
} | |
} | |
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "MASK", "DETAILER_PIPE", "IMAGE") | |
RETURN_NAMES = ("image", "cropped_refined", "cropped_enhanced_alpha", "mask", "detailer_pipe", "cnet_images") | |
OUTPUT_IS_LIST = (False, True, True, False, False, True) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Simple" | |
def doit(self, image, detailer_pipe, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler, | |
denoise, feather, noise_mask, force_inpaint, bbox_threshold, bbox_dilation, bbox_crop_factor, | |
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion, | |
sam_mask_hint_threshold, sam_mask_hint_use_negative, drop_size, refiner_ratio=None, | |
cycle=1, inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None): | |
result_img = None | |
result_mask = None | |
result_cropped_enhanced = [] | |
result_cropped_enhanced_alpha = [] | |
result_cnet_images = [] | |
if len(image) > 1: | |
print(f"[Impact Pack] WARN: FaceDetailer is not a node designed for video detailing. If you intend to perform video detailing, please use Detailer For AnimateDiff.") | |
model, clip, vae, positive, negative, wildcard, bbox_detector, segm_detector, sam_model_opt, detailer_hook, \ | |
refiner_model, refiner_clip, refiner_positive, refiner_negative = detailer_pipe | |
for i, single_image in enumerate(image): | |
enhanced_img, cropped_enhanced, cropped_enhanced_alpha, mask, cnet_pil_list = FaceDetailer.enhance_face( | |
single_image.unsqueeze(0), model, clip, vae, guide_size, guide_size_for, max_size, seed + i, steps, cfg, sampler_name, scheduler, | |
positive, negative, denoise, feather, noise_mask, force_inpaint, | |
bbox_threshold, bbox_dilation, bbox_crop_factor, | |
sam_detection_hint, sam_dilation, sam_threshold, sam_bbox_expansion, sam_mask_hint_threshold, | |
sam_mask_hint_use_negative, drop_size, bbox_detector, segm_detector, sam_model_opt, wildcard, detailer_hook, | |
refiner_ratio=refiner_ratio, refiner_model=refiner_model, | |
refiner_clip=refiner_clip, refiner_positive=refiner_positive, refiner_negative=refiner_negative, | |
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt) | |
result_img = torch.cat((result_img, enhanced_img), dim=0) if result_img is not None else enhanced_img | |
result_mask = torch.cat((result_mask, mask), dim=0) if result_mask is not None else mask | |
result_cropped_enhanced.extend(cropped_enhanced) | |
result_cropped_enhanced_alpha.extend(cropped_enhanced_alpha) | |
result_cnet_images.extend(cnet_pil_list) | |
if len(result_cropped_enhanced) == 0: | |
result_cropped_enhanced = [empty_pil_tensor()] | |
if len(result_cropped_enhanced_alpha) == 0: | |
result_cropped_enhanced_alpha = [empty_pil_tensor()] | |
if len(result_cnet_images) == 0: | |
result_cnet_images = [empty_pil_tensor()] | |
return result_img, result_cropped_enhanced, result_cropped_enhanced_alpha, result_mask, detailer_pipe, result_cnet_images | |
class MaskDetailerPipe: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"image": ("IMAGE", ), | |
"mask": ("MASK", ), | |
"basic_pipe": ("BASIC_PIPE",), | |
"guide_size": ("FLOAT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"guide_size_for": ("BOOLEAN", {"default": True, "label_on": "mask bbox", "label_off": "crop region"}), | |
"max_size": ("FLOAT", {"default": 1024, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
"mask_mode": ("BOOLEAN", {"default": True, "label_on": "masked only", "label_off": "whole"}), | |
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), | |
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,), | |
"scheduler": (core.SCHEDULERS,), | |
"denoise": ("FLOAT", {"default": 0.5, "min": 0.0001, "max": 1.0, "step": 0.01}), | |
"feather": ("INT", {"default": 5, "min": 0, "max": 100, "step": 1}), | |
"crop_factor": ("FLOAT", {"default": 3.0, "min": 1.0, "max": 10, "step": 0.1}), | |
"drop_size": ("INT", {"min": 1, "max": MAX_RESOLUTION, "step": 1, "default": 10}), | |
"refiner_ratio": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0}), | |
"batch_size": ("INT", {"default": 1, "min": 1, "max": 100}), | |
"cycle": ("INT", {"default": 1, "min": 1, "max": 10, "step": 1}), | |
}, | |
"optional": { | |
"refiner_basic_pipe_opt": ("BASIC_PIPE", ), | |
"detailer_hook": ("DETAILER_HOOK",), | |
"inpaint_model": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}), | |
"noise_mask_feather": ("INT", {"default": 20, "min": 0, "max": 100, "step": 1}), | |
"bbox_fill": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}), | |
"contour_fill": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}), | |
"scheduler_func_opt": ("SCHEDULER_FUNC",), | |
} | |
} | |
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "BASIC_PIPE", "BASIC_PIPE") | |
RETURN_NAMES = ("image", "cropped_refined", "cropped_enhanced_alpha", "basic_pipe", "refiner_basic_pipe_opt") | |
OUTPUT_IS_LIST = (False, True, True, False, False) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Detailer" | |
def doit(self, image, mask, basic_pipe, guide_size, guide_size_for, max_size, mask_mode, | |
seed, steps, cfg, sampler_name, scheduler, denoise, | |
feather, crop_factor, drop_size, refiner_ratio, batch_size, cycle=1, | |
refiner_basic_pipe_opt=None, detailer_hook=None, inpaint_model=False, noise_mask_feather=0, | |
bbox_fill=False, contour_fill=True, scheduler_func_opt=None): | |
if len(image) > 1: | |
raise Exception('[Impact Pack] ERROR: MaskDetailer does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.') | |
model, clip, vae, positive, negative = basic_pipe | |
if refiner_basic_pipe_opt is None: | |
refiner_model, refiner_clip, refiner_positive, refiner_negative = None, None, None, None | |
else: | |
refiner_model, refiner_clip, _, refiner_positive, refiner_negative = refiner_basic_pipe_opt | |
# create segs | |
if mask is not None: | |
mask = make_2d_mask(mask) | |
segs = core.mask_to_segs(mask, False, crop_factor, bbox_fill, drop_size, is_contour=contour_fill) | |
else: | |
segs = ((image.shape[1], image.shape[2]), []) | |
enhanced_img_batch = None | |
cropped_enhanced_list = [] | |
cropped_enhanced_alpha_list = [] | |
for i in range(batch_size): | |
if mask is not None: | |
enhanced_img, _, cropped_enhanced, cropped_enhanced_alpha, _, _ = \ | |
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed+i, steps, | |
cfg, sampler_name, scheduler, positive, negative, denoise, feather, mask_mode, | |
force_inpaint=True, wildcard_opt=None, detailer_hook=detailer_hook, | |
refiner_ratio=refiner_ratio, refiner_model=refiner_model, refiner_clip=refiner_clip, | |
refiner_positive=refiner_positive, refiner_negative=refiner_negative, | |
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt) | |
else: | |
enhanced_img, cropped_enhanced, cropped_enhanced_alpha = image, [], [] | |
if enhanced_img_batch is None: | |
enhanced_img_batch = enhanced_img | |
else: | |
enhanced_img_batch = torch.cat((enhanced_img_batch, enhanced_img), dim=0) | |
cropped_enhanced_list += cropped_enhanced | |
cropped_enhanced_alpha_list += cropped_enhanced_alpha | |
# set fallback image | |
if len(cropped_enhanced_list) == 0: | |
cropped_enhanced_list = [empty_pil_tensor()] | |
if len(cropped_enhanced_alpha_list) == 0: | |
cropped_enhanced_alpha_list = [empty_pil_tensor()] | |
return enhanced_img_batch, cropped_enhanced_list, cropped_enhanced_alpha_list, basic_pipe, refiner_basic_pipe_opt | |
class DetailerForEachTest(DetailerForEach): | |
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "IMAGE", "IMAGE") | |
RETURN_NAMES = ("image", "cropped", "cropped_refined", "cropped_refined_alpha", "cnet_images") | |
OUTPUT_IS_LIST = (False, True, True, True, True) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Detailer" | |
def doit(self, image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, | |
scheduler, positive, negative, denoise, feather, noise_mask, force_inpaint, wildcard, detailer_hook=None, | |
cycle=1, inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None): | |
if len(image) > 1: | |
raise Exception('[Impact Pack] ERROR: DetailerForEach does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.') | |
enhanced_img, cropped, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list, new_segs = \ | |
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, | |
cfg, sampler_name, scheduler, positive, negative, denoise, feather, noise_mask, | |
force_inpaint, wildcard, detailer_hook, | |
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt) | |
# set fallback image | |
if len(cropped) == 0: | |
cropped = [empty_pil_tensor()] | |
if len(cropped_enhanced) == 0: | |
cropped_enhanced = [empty_pil_tensor()] | |
if len(cropped_enhanced_alpha) == 0: | |
cropped_enhanced_alpha = [empty_pil_tensor()] | |
if len(cnet_pil_list) == 0: | |
cnet_pil_list = [empty_pil_tensor()] | |
return enhanced_img, cropped, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list | |
class DetailerForEachTestPipe(DetailerForEachPipe): | |
RETURN_TYPES = ("IMAGE", "SEGS", "BASIC_PIPE", "IMAGE", "IMAGE", "IMAGE", "IMAGE", ) | |
RETURN_NAMES = ("image", "segs", "basic_pipe", "cropped", "cropped_refined", "cropped_refined_alpha", 'cnet_images') | |
OUTPUT_IS_LIST = (False, False, False, True, True, True, True) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Detailer" | |
def doit(self, image, segs, guide_size, guide_size_for, max_size, seed, steps, cfg, sampler_name, scheduler, | |
denoise, feather, noise_mask, force_inpaint, basic_pipe, wildcard, cycle=1, | |
refiner_ratio=None, detailer_hook=None, refiner_basic_pipe_opt=None, inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None): | |
if len(image) > 1: | |
raise Exception('[Impact Pack] ERROR: DetailerForEach does not allow image batches.\nPlease refer to https://github.com/ltdrdata/ComfyUI-extension-tutorials/blob/Main/ComfyUI-Impact-Pack/tutorial/batching-detailer.md for more information.') | |
model, clip, vae, positive, negative = basic_pipe | |
if refiner_basic_pipe_opt is None: | |
refiner_model, refiner_clip, refiner_positive, refiner_negative = None, None, None, None | |
else: | |
refiner_model, refiner_clip, _, refiner_positive, refiner_negative = refiner_basic_pipe_opt | |
enhanced_img, cropped, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list, new_segs = \ | |
DetailerForEach.do_detail(image, segs, model, clip, vae, guide_size, guide_size_for, max_size, seed, steps, cfg, | |
sampler_name, scheduler, positive, negative, denoise, feather, noise_mask, | |
force_inpaint, wildcard, detailer_hook, | |
refiner_ratio=refiner_ratio, refiner_model=refiner_model, | |
refiner_clip=refiner_clip, refiner_positive=refiner_positive, | |
refiner_negative=refiner_negative, | |
cycle=cycle, inpaint_model=inpaint_model, noise_mask_feather=noise_mask_feather, scheduler_func_opt=scheduler_func_opt) | |
# set fallback image | |
if len(cropped) == 0: | |
cropped = [empty_pil_tensor()] | |
if len(cropped_enhanced) == 0: | |
cropped_enhanced = [empty_pil_tensor()] | |
if len(cropped_enhanced_alpha) == 0: | |
cropped_enhanced_alpha = [empty_pil_tensor()] | |
if len(cnet_pil_list) == 0: | |
cnet_pil_list = [empty_pil_tensor()] | |
return enhanced_img, new_segs, basic_pipe, cropped, cropped_enhanced, cropped_enhanced_alpha, cnet_pil_list | |
class SegsBitwiseAndMask: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"segs": ("SEGS",), | |
"mask": ("MASK",), | |
} | |
} | |
RETURN_TYPES = ("SEGS",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Operation" | |
def doit(self, segs, mask): | |
return (core.segs_bitwise_and_mask(segs, mask), ) | |
class SegsBitwiseAndMaskForEach: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"segs": ("SEGS",), | |
"masks": ("MASK",), | |
} | |
} | |
RETURN_TYPES = ("SEGS",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Operation" | |
def doit(self, segs, masks): | |
return (core.apply_mask_to_each_seg(segs, masks), ) | |
class BitwiseAndMaskForEach: | |
def INPUT_TYPES(s): | |
return {"required": | |
{ | |
"base_segs": ("SEGS",), | |
"mask_segs": ("SEGS",), | |
} | |
} | |
RETURN_TYPES = ("SEGS",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Operation" | |
def doit(self, base_segs, mask_segs): | |
mask = core.segs_to_combined_mask(mask_segs) | |
mask = make_3d_mask(mask) | |
return SegsBitwiseAndMask().doit(base_segs, mask) | |
class SubtractMaskForEach: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"base_segs": ("SEGS",), | |
"mask_segs": ("SEGS",), | |
} | |
} | |
RETURN_TYPES = ("SEGS",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Operation" | |
def doit(self, base_segs, mask_segs): | |
mask = core.segs_to_combined_mask(mask_segs) | |
mask = make_3d_mask(mask) | |
return (core.segs_bitwise_subtract_mask(base_segs, mask), ) | |
class ToBinaryMask: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"mask": ("MASK",), | |
"threshold": ("INT", {"default": 20, "min": 1, "max": 255}), | |
} | |
} | |
RETURN_TYPES = ("MASK",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Operation" | |
def doit(self, mask, threshold): | |
mask = to_binary_mask(mask, threshold/255.0) | |
return (mask,) | |
class BitwiseAndMask: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"mask1": ("MASK",), | |
"mask2": ("MASK",), | |
} | |
} | |
RETURN_TYPES = ("MASK",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Operation" | |
def doit(self, mask1, mask2): | |
mask = bitwise_and_masks(mask1, mask2) | |
return (mask,) | |
class SubtractMask: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"mask1": ("MASK", ), | |
"mask2": ("MASK", ), | |
} | |
} | |
RETURN_TYPES = ("MASK",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Operation" | |
def doit(self, mask1, mask2): | |
mask = subtract_masks(mask1, mask2) | |
return (mask,) | |
class AddMask: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"mask1": ("MASK",), | |
"mask2": ("MASK",), | |
} | |
} | |
RETURN_TYPES = ("MASK",) | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Operation" | |
def doit(self, mask1, mask2): | |
mask = add_masks(mask1, mask2) | |
return (mask,) | |
import nodes | |
def get_image_hash(arr): | |
split_index1 = arr.shape[0] // 2 | |
split_index2 = arr.shape[1] // 2 | |
part1 = arr[:split_index1, :split_index2] | |
part2 = arr[:split_index1, split_index2:] | |
part3 = arr[split_index1:, :split_index2] | |
part4 = arr[split_index1:, split_index2:] | |
# 각 부분을 합산 | |
sum1 = np.sum(part1) | |
sum2 = np.sum(part2) | |
sum3 = np.sum(part3) | |
sum4 = np.sum(part4) | |
return hash((sum1, sum2, sum3, sum4)) | |
def get_file_item(base_type, path): | |
path_type = base_type | |
if path == "[output]": | |
path_type = "output" | |
path = path[:-9] | |
elif path == "[input]": | |
path_type = "input" | |
path = path[:-8] | |
elif path == "[temp]": | |
path_type = "temp" | |
path = path[:-7] | |
subfolder = os.path.dirname(path) | |
filename = os.path.basename(path) | |
return { | |
"filename": filename, | |
"subfolder": subfolder, | |
"type": path_type | |
} | |
class ImageReceiver: | |
def INPUT_TYPES(s): | |
input_dir = folder_paths.get_input_directory() | |
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))] | |
return {"required": { | |
"image": (sorted(files), ), | |
"link_id": ("INT", {"default": 0, "min": 0, "max": sys.maxsize, "step": 1}), | |
"save_to_workflow": ("BOOLEAN", {"default": False}), | |
"image_data": ("STRING", {"multiline": False}), | |
"trigger_always": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}), | |
}, | |
} | |
FUNCTION = "doit" | |
RETURN_TYPES = ("IMAGE", "MASK") | |
CATEGORY = "ImpactPack/Util" | |
def doit(self, image, link_id, save_to_workflow, image_data, trigger_always): | |
if save_to_workflow: | |
try: | |
image_data = base64.b64decode(image_data.split(",")[1]) | |
i = Image.open(BytesIO(image_data)) | |
i = ImageOps.exif_transpose(i) | |
image = i.convert("RGB") | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = torch.from_numpy(image)[None,] | |
if 'A' in i.getbands(): | |
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0 | |
mask = 1. - torch.from_numpy(mask) | |
else: | |
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu") | |
return (image, mask.unsqueeze(0)) | |
except Exception as e: | |
print(f"[WARN] ComfyUI-Impact-Pack: ImageReceiver - invalid 'image_data'") | |
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu") | |
return (empty_pil_tensor(64, 64), mask, ) | |
else: | |
return nodes.LoadImage().load_image(image) | |
def VALIDATE_INPUTS(s, image, link_id, save_to_workflow, image_data, trigger_always): | |
if image != '#DATA' and not folder_paths.exists_annotated_filepath(image) or image.startswith("/") or ".." in image: | |
return "Invalid image file: {}".format(image) | |
return True | |
def IS_CHANGED(s, image, link_id, save_to_workflow, image_data, trigger_always): | |
if trigger_always: | |
return float("NaN") | |
else: | |
if save_to_workflow: | |
return hash(image_data) | |
else: | |
return hash(image) | |
from server import PromptServer | |
class ImageSender(nodes.PreviewImage): | |
def INPUT_TYPES(s): | |
return {"required": { | |
"images": ("IMAGE", ), | |
"filename_prefix": ("STRING", {"default": "ImgSender"}), | |
"link_id": ("INT", {"default": 0, "min": 0, "max": sys.maxsize, "step": 1}), }, | |
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, | |
} | |
OUTPUT_NODE = True | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Util" | |
def doit(self, images, filename_prefix="ImgSender", link_id=0, prompt=None, extra_pnginfo=None): | |
result = nodes.PreviewImage().save_images(images, filename_prefix, prompt, extra_pnginfo) | |
PromptServer.instance.send_sync("img-send", {"link_id": link_id, "images": result['ui']['images']}) | |
return result | |
class LatentReceiver: | |
def __init__(self): | |
self.input_dir = folder_paths.get_input_directory() | |
self.type = "input" | |
def INPUT_TYPES(s): | |
def check_file_extension(x): | |
return x.endswith(".latent") or x.endswith(".latent.png") | |
input_dir = folder_paths.get_input_directory() | |
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and check_file_extension(f)] | |
return {"required": { | |
"latent": (sorted(files), ), | |
"link_id": ("INT", {"default": 0, "min": 0, "max": sys.maxsize, "step": 1}), | |
"trigger_always": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}), | |
}, | |
} | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Util" | |
RETURN_TYPES = ("LATENT",) | |
def load_preview_latent(image_path): | |
if not os.path.exists(image_path): | |
return None | |
image = Image.open(image_path) | |
exif_data = piexif.load(image.info["exif"]) | |
if piexif.ExifIFD.UserComment in exif_data["Exif"]: | |
compressed_data = exif_data["Exif"][piexif.ExifIFD.UserComment] | |
compressed_data_io = BytesIO(compressed_data) | |
with zipfile.ZipFile(compressed_data_io, mode='r') as archive: | |
tensor_bytes = archive.read("latent") | |
tensor = safetensors.torch.load(tensor_bytes) | |
return {"samples": tensor['latent_tensor']} | |
return None | |
def parse_filename(self, filename): | |
pattern = r"^(.*)/(.*?)\[(.*)\]\s*$" | |
match = re.match(pattern, filename) | |
if match: | |
subfolder = match.group(1) | |
filename = match.group(2).rstrip() | |
file_type = match.group(3) | |
else: | |
subfolder = '' | |
file_type = self.type | |
return {'filename': filename, 'subfolder': subfolder, 'type': file_type} | |
def doit(self, **kwargs): | |
if 'latent' not in kwargs: | |
return (torch.zeros([1, 4, 8, 8]), ) | |
latent = kwargs['latent'] | |
latent_name = latent | |
latent_path = folder_paths.get_annotated_filepath(latent_name) | |
if latent.endswith(".latent"): | |
latent = safetensors.torch.load_file(latent_path, device="cpu") | |
multiplier = 1.0 | |
if "latent_format_version_0" not in latent: | |
multiplier = 1.0 / 0.18215 | |
samples = {"samples": latent["latent_tensor"].float() * multiplier} | |
else: | |
samples = LatentReceiver.load_preview_latent(latent_path) | |
if samples is None: | |
samples = {'samples': torch.zeros([1, 4, 8, 8])} | |
preview = self.parse_filename(latent_name) | |
return { | |
'ui': {"images": [preview]}, | |
'result': (samples, ) | |
} | |
def IS_CHANGED(s, latent, link_id, trigger_always): | |
if trigger_always: | |
return float("NaN") | |
else: | |
image_path = folder_paths.get_annotated_filepath(latent) | |
m = hashlib.sha256() | |
with open(image_path, 'rb') as f: | |
m.update(f.read()) | |
return m.digest().hex() | |
def VALIDATE_INPUTS(s, latent, link_id, trigger_always): | |
if not folder_paths.exists_annotated_filepath(latent) or latent.startswith("/") or ".." in latent: | |
return "Invalid latent file: {}".format(latent) | |
return True | |
class LatentSender(nodes.SaveLatent): | |
def __init__(self): | |
super().__init__() | |
self.output_dir = folder_paths.get_temp_directory() | |
self.type = "temp" | |
def INPUT_TYPES(s): | |
return {"required": { | |
"samples": ("LATENT", ), | |
"filename_prefix": ("STRING", {"default": "latents/LatentSender"}), | |
"link_id": ("INT", {"default": 0, "min": 0, "max": sys.maxsize, "step": 1}), | |
"preview_method": (["Latent2RGB-SDXL", "Latent2RGB-SD15", "TAESDXL", "TAESD15"],) | |
}, | |
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, | |
} | |
OUTPUT_NODE = True | |
RETURN_TYPES = () | |
FUNCTION = "doit" | |
CATEGORY = "ImpactPack/Util" | |
def save_to_file(tensor_bytes, prompt, extra_pnginfo, image, image_path): | |
compressed_data = BytesIO() | |
with zipfile.ZipFile(compressed_data, mode='w') as archive: | |
archive.writestr("latent", tensor_bytes) | |
image = image.copy() | |
exif_data = {"Exif": {piexif.ExifIFD.UserComment: compressed_data.getvalue()}} | |
metadata = PngInfo() | |
if prompt is not None: | |
metadata.add_text("prompt", json.dumps(prompt)) | |
if extra_pnginfo is not None: | |
for x in extra_pnginfo: | |
metadata.add_text(x, json.dumps(extra_pnginfo[x])) | |
exif_bytes = piexif.dump(exif_data) | |
image.save(image_path, format='png', exif=exif_bytes, pnginfo=metadata, optimize=True) | |
def prepare_preview(latent_tensor, preview_method): | |
from comfy.cli_args import LatentPreviewMethod | |
import comfy.latent_formats as latent_formats | |
lower_bound = 128 | |
upper_bound = 256 | |
if preview_method == "Latent2RGB-SD15": | |
latent_format = latent_formats.SD15() | |
method = LatentPreviewMethod.Latent2RGB | |
elif preview_method == "TAESD15": | |
latent_format = latent_formats.SD15() | |
method = LatentPreviewMethod.TAESD | |
elif preview_method == "TAESDXL": | |
latent_format = latent_formats.SDXL() | |
method = LatentPreviewMethod.TAESD | |
else: # preview_method == "Latent2RGB-SDXL" | |
latent_format = latent_formats.SDXL() | |
method = LatentPreviewMethod.Latent2RGB | |
previewer = core.get_previewer("cpu", latent_format=latent_format, force=True, method=method) | |
image = previewer.decode_latent_to_preview(latent_tensor) | |
min_size = min(image.size[0], image.size[1]) | |
max_size = max(image.size[0], image.size[1]) | |
scale_factor = 1 | |
if max_size > upper_bound: | |
scale_factor = upper_bound/max_size | |
# prevent too small preview | |
if min_size*scale_factor < lower_bound: | |
scale_factor = lower_bound/min_size | |
w = int(image.size[0] * scale_factor) | |
h = int(image.size[1] * scale_factor) | |
image = image.resize((w, h), resample=Image.NEAREST) | |
return LatentSender.attach_format_text(image) | |
def attach_format_text(image): | |
width_a, height_a = image.size | |
letter_image = Image.open(latent_letter_path) | |
width_b, height_b = letter_image.size | |
new_width = max(width_a, width_b) | |
new_height = height_a + height_b | |
new_image = Image.new('RGB', (new_width, new_height), (0, 0, 0)) | |
offset_x = (new_width - width_b) // 2 | |
offset_y = (height_a + (new_height - height_a - height_b) // 2) | |
new_image.paste(letter_image, (offset_x, offset_y)) | |
new_image.paste(image, (0, 0)) | |
return new_image | |
def doit(self, samples, filename_prefix="latents/LatentSender", link_id=0, preview_method="Latent2RGB-SDXL", prompt=None, extra_pnginfo=None): | |
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) | |
# load preview | |
preview = LatentSender.prepare_preview(samples['samples'], preview_method) | |
# support save metadata for latent sharing | |
file = f"{filename}_{counter:05}_.latent.png" | |
fullpath = os.path.join(full_output_folder, file) | |
output = {"latent_tensor": samples["samples"]} | |
tensor_bytes = safetensors.torch.save(output) | |
LatentSender.save_to_file(tensor_bytes, prompt, extra_pnginfo, preview, fullpath) | |
latent_path = { | |
'filename': file, | |
'subfolder': subfolder, | |
'type': self.type | |
} | |
PromptServer.instance.send_sync("latent-send", {"link_id": link_id, "images": [latent_path]}) | |
return {'ui': {'images': [latent_path]}} | |
class ImpactWildcardProcessor: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"wildcard_text": ("STRING", {"multiline": True, "dynamicPrompts": False}), | |
"populated_text": ("STRING", {"multiline": True, "dynamicPrompts": False}), | |
"mode": ("BOOLEAN", {"default": True, "label_on": "Populate", "label_off": "Fixed"}), | |
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"Select to add Wildcard": (["Select the Wildcard to add to the text"],), | |
}, | |
} | |
CATEGORY = "ImpactPack/Prompt" | |
RETURN_TYPES = ("STRING", ) | |
FUNCTION = "doit" | |
def process(**kwargs): | |
return impact.wildcards.process(**kwargs) | |
def doit(self, *args, **kwargs): | |
populated_text = ImpactWildcardProcessor.process(text=kwargs['populated_text'], seed=kwargs['seed']) | |
return (populated_text, ) | |
class ImpactWildcardEncode: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"model": ("MODEL",), | |
"clip": ("CLIP",), | |
"wildcard_text": ("STRING", {"multiline": True, "dynamicPrompts": False}), | |
"populated_text": ("STRING", {"multiline": True, "dynamicPrompts": False}), | |
"mode": ("BOOLEAN", {"default": True, "label_on": "Populate", "label_off": "Fixed"}), | |
"Select to add LoRA": (["Select the LoRA to add to the text"] + folder_paths.get_filename_list("loras"), ), | |
"Select to add Wildcard": (["Select the Wildcard to add to the text"], ), | |
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
}, | |
} | |
CATEGORY = "ImpactPack/Prompt" | |
RETURN_TYPES = ("MODEL", "CLIP", "CONDITIONING", "STRING") | |
RETURN_NAMES = ("model", "clip", "conditioning", "populated_text") | |
FUNCTION = "doit" | |
def process_with_loras(**kwargs): | |
return impact.wildcards.process_with_loras(**kwargs) | |
def get_wildcard_list(): | |
return impact.wildcards.get_wildcard_list() | |
def doit(self, *args, **kwargs): | |
populated = kwargs['populated_text'] | |
processed = [] | |
model, clip, conditioning = impact.wildcards.process_with_loras(wildcard_opt=populated, model=kwargs['model'], clip=kwargs['clip'], seed=kwargs['seed'], processed=processed) | |
return model, clip, conditioning, processed[0] | |
class ImpactSchedulerAdapter: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, {"defaultInput": True, }), | |
"extra_scheduler": (['None', 'AYS SDXL', 'AYS SD1', 'AYS SVD', 'GITS[coeff=1.2]'],), | |
}} | |
CATEGORY = "ImpactPack/Util" | |
RETURN_TYPES = (core.SCHEDULERS,) | |
RETURN_NAMES = ("scheduler",) | |
FUNCTION = "doit" | |
def doit(self, scheduler, extra_scheduler): | |
if extra_scheduler != 'None': | |
return (extra_scheduler,) | |
return (scheduler,) | |