flatcherlee's picture
Upload 2334 files
3d5837a verified
import traceback
import comfy
import nodes
import torch
import re
from . import prompt_support
from .libs import utils, common
class RegionalPromptSimple:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"basic_pipe": ("BASIC_PIPE",),
"mask": ("MASK",),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (common.SCHEDULERS,),
"wildcard_prompt": ("STRING", {"multiline": True, "dynamicPrompts": False, "placeholder": "wildcard prompt"}),
"controlnet_in_pipe": ("BOOLEAN", {"default": False, "label_on": "Keep", "label_off": "Override"}),
"sigma_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
},
"optional": {
"variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"variation_method": (["linear", "slerp"],),
"scheduler_func_opt": ("SCHEDULER_FUNC",),
}
}
RETURN_TYPES = ("REGIONAL_PROMPTS", )
FUNCTION = "doit"
CATEGORY = "InspirePack/Regional"
@staticmethod
def doit(basic_pipe, mask, cfg, sampler_name, scheduler, wildcard_prompt,
controlnet_in_pipe=False, sigma_factor=1.0, variation_seed=0, variation_strength=0.0, variation_method='linear', scheduler_func_opt=None):
if 'RegionalPrompt' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/ltdrdata/ComfyUI-Impact-Pack',
"To use 'RegionalPromptSimple' node, 'Impact Pack' extension is required.")
raise Exception(f"[ERROR] To use RegionalPromptSimple, you need to install 'ComfyUI-Impact-Pack'")
model, clip, vae, positive, negative = basic_pipe
iwe = nodes.NODE_CLASS_MAPPINGS['ImpactWildcardEncode']()
kap = nodes.NODE_CLASS_MAPPINGS['KSamplerAdvancedProvider']()
rp = nodes.NODE_CLASS_MAPPINGS['RegionalPrompt']()
if wildcard_prompt != "":
model, clip, new_positive, _ = iwe.doit(model=model, clip=clip, populated_text=wildcard_prompt, seed=None)
if controlnet_in_pipe:
prev_cnet = None
for t in positive:
if 'control' in t[1] and 'control_apply_to_uncond' in t[1]:
prev_cnet = t[1]['control'], t[1]['control_apply_to_uncond']
break
if prev_cnet is not None:
for t in new_positive:
t[1]['control'] = prev_cnet[0]
t[1]['control_apply_to_uncond'] = prev_cnet[1]
else:
new_positive = positive
basic_pipe = model, clip, vae, new_positive, negative
sampler = kap.doit(cfg, sampler_name, scheduler, basic_pipe, sigma_factor=sigma_factor, scheduler_func_opt=scheduler_func_opt)[0]
try:
regional_prompts = rp.doit(mask, sampler, variation_seed=variation_seed, variation_strength=variation_strength, variation_method=variation_method)[0]
except:
raise Exception("[Inspire-Pack] ERROR: Impact Pack is outdated. Update Impact Pack to latest version to use this.")
return (regional_prompts, )
def color_to_mask(color_mask, mask_color):
try:
if mask_color.startswith("#"):
selected = int(mask_color[1:], 16)
else:
selected = int(mask_color, 10)
except Exception:
raise Exception(f"[ERROR] Invalid mask_color value. mask_color should be a color value for RGB")
temp = (torch.clamp(color_mask, 0, 1.0) * 255.0).round().to(torch.int)
temp = torch.bitwise_left_shift(temp[:, :, :, 0], 16) + torch.bitwise_left_shift(temp[:, :, :, 1], 8) + temp[:, :, :, 2]
mask = torch.where(temp == selected, 1.0, 0.0)
return mask
class RegionalPromptColorMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"basic_pipe": ("BASIC_PIPE",),
"color_mask": ("IMAGE",),
"mask_color": ("STRING", {"multiline": False, "default": "#FFFFFF"}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (common.SCHEDULERS,),
"wildcard_prompt": ("STRING", {"multiline": True, "dynamicPrompts": False, "placeholder": "wildcard prompt"}),
"controlnet_in_pipe": ("BOOLEAN", {"default": False, "label_on": "Keep", "label_off": "Override"}),
"sigma_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
},
"optional": {
"variation_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"variation_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"variation_method": (["linear", "slerp"],),
"scheduler_func_opt": ("SCHEDULER_FUNC",),
}
}
RETURN_TYPES = ("REGIONAL_PROMPTS", "MASK")
FUNCTION = "doit"
CATEGORY = "InspirePack/Regional"
@staticmethod
def doit(basic_pipe, color_mask, mask_color, cfg, sampler_name, scheduler, wildcard_prompt,
controlnet_in_pipe=False, sigma_factor=1.0, variation_seed=0, variation_strength=0.0, variation_method="linear", scheduler_func_opt=None):
mask = color_to_mask(color_mask, mask_color)
rp = RegionalPromptSimple().doit(basic_pipe, mask, cfg, sampler_name, scheduler, wildcard_prompt, controlnet_in_pipe,
sigma_factor=sigma_factor, variation_seed=variation_seed, variation_strength=variation_strength, variation_method=variation_method, scheduler_func_opt=scheduler_func_opt)[0]
return rp, mask
class RegionalConditioningSimple:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"clip": ("CLIP", ),
"mask": ("MASK",),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
"prompt": ("STRING", {"multiline": True, "placeholder": "prompt"}),
},
}
RETURN_TYPES = ("CONDITIONING", )
FUNCTION = "doit"
CATEGORY = "InspirePack/Regional"
@staticmethod
def doit(clip, mask, strength, set_cond_area, prompt):
conditioning = nodes.CLIPTextEncode().encode(clip, prompt)[0]
conditioning = nodes.ConditioningSetMask().append(conditioning, mask, set_cond_area, strength)[0]
return (conditioning, )
class RegionalConditioningColorMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"clip": ("CLIP", ),
"color_mask": ("IMAGE",),
"mask_color": ("STRING", {"multiline": False, "default": "#FFFFFF"}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
"prompt": ("STRING", {"multiline": True, "placeholder": "prompt"}),
},
"optional": {
"dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
}
}
RETURN_TYPES = ("CONDITIONING", "MASK")
FUNCTION = "doit"
CATEGORY = "InspirePack/Regional"
@staticmethod
def doit(clip, color_mask, mask_color, strength, set_cond_area, prompt, dilation=0):
mask = color_to_mask(color_mask, mask_color)
if dilation != 0:
mask = utils.dilate_mask(mask, dilation)
conditioning = nodes.CLIPTextEncode().encode(clip, prompt)[0]
conditioning = nodes.ConditioningSetMask().append(conditioning, mask, set_cond_area, strength)[0]
return conditioning, mask
class ToIPAdapterPipe:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ipadapter": ("IPADAPTER", ),
"model": ("MODEL",),
},
"optional": {
"clip_vision": ("CLIP_VISION",),
"insightface": ("INSIGHTFACE",),
}
}
RETURN_TYPES = ("IPADAPTER_PIPE",)
FUNCTION = "doit"
CATEGORY = "InspirePack/Util"
@staticmethod
def doit(ipadapter, model, clip_vision, insightface=None):
pipe = ipadapter, model, clip_vision, insightface, lambda x: x
return (pipe,)
class FromIPAdapterPipe:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"ipadapter_pipe": ("IPADAPTER_PIPE", ),
}
}
RETURN_TYPES = ("IPADAPTER", "MODEL", "CLIP_VISION", "INSIGHTFACE")
RETURN_NAMES = ("ipadapter", "model", "clip_vision", "insight_face")
FUNCTION = "doit"
CATEGORY = "InspirePack/Util"
def doit(self, ipadapter_pipe):
ipadapter, model, clip_vision, insightface, _ = ipadapter_pipe
return ipadapter, model, clip_vision, insightface
class IPAdapterConditioning:
def __init__(self, mask, weight, weight_type, noise=None, image=None, neg_image=None, embeds=None, start_at=0.0, end_at=1.0, combine_embeds='concat', unfold_batch=False, weight_v2=False, neg_embeds=None):
self.mask = mask
self.image = image
self.neg_image = neg_image
self.embeds = embeds
self.neg_embeds = neg_embeds
self.weight = weight
self.noise = noise
self.weight_type = weight_type
self.start_at = start_at
self.end_at = end_at
self.unfold_batch = unfold_batch
self.weight_v2 = weight_v2
self.combine_embeds = combine_embeds
def doit(self, ipadapter_pipe):
ipadapter, model, clip_vision, insightface, _ = ipadapter_pipe
if 'IPAdapterAdvanced' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/cubiq/ComfyUI_IPAdapter_plus',
"To use 'Regional IPAdapter' node, 'ComfyUI IPAdapter Plus' extension is required.")
raise Exception(f"[ERROR] To use IPAdapterModelHelper, you need to install 'ComfyUI IPAdapter Plus'")
if self.embeds is None:
obj = nodes.NODE_CLASS_MAPPINGS['IPAdapterAdvanced']
model = obj().apply_ipadapter(model=model, ipadapter=ipadapter, weight=self.weight, weight_type=self.weight_type,
start_at=self.start_at, end_at=self.end_at, combine_embeds=self.combine_embeds,
clip_vision=clip_vision, image=self.image, image_negative=self.neg_image, attn_mask=self.mask,
insightface=insightface, weight_faceidv2=self.weight_v2)[0]
else:
obj = nodes.NODE_CLASS_MAPPINGS['IPAdapterEmbeds']
model = obj().apply_ipadapter(model=model, ipadapter=ipadapter, pos_embed=self.embeds, weight=self.weight, weight_type=self.weight_type,
start_at=self.start_at, end_at=self.end_at, neg_embed=self.neg_embeds,
attn_mask=self.mask, clip_vision=clip_vision)[0]
return model
IPADAPTER_WEIGHT_TYPES_CACHE = None
def IPADAPTER_WEIGHT_TYPES():
global IPADAPTER_WEIGHT_TYPES_CACHE
if IPADAPTER_WEIGHT_TYPES_CACHE is None:
try:
IPADAPTER_WEIGHT_TYPES_CACHE = nodes.NODE_CLASS_MAPPINGS['IPAdapterAdvanced']().INPUT_TYPES()['required']['weight_type'][0]
except Exception:
print(f"[Inspire Pack] IPAdapterPlus is not installed.")
IPADAPTER_WEIGHT_TYPES_CACHE = ["IPAdapterPlus is not installed"]
return IPADAPTER_WEIGHT_TYPES_CACHE
class RegionalIPAdapterMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"image": ("IMAGE",),
"weight": ("FLOAT", {"default": 0.7, "min": -1, "max": 3, "step": 0.05}),
"noise": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"weight_type": (IPADAPTER_WEIGHT_TYPES(), ),
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"unfold_batch": ("BOOLEAN", {"default": False}),
},
"optional": {
"faceid_v2": ("BOOLEAN", {"default": False}),
"weight_v2": ("FLOAT", {"default": 1.0, "min": -1, "max": 3, "step": 0.05}),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
"neg_image": ("IMAGE",),
}
}
RETURN_TYPES = ("REGIONAL_IPADAPTER", )
FUNCTION = "doit"
CATEGORY = "InspirePack/Regional"
@staticmethod
def doit(mask, image, weight, noise, weight_type, start_at=0.0, end_at=1.0, unfold_batch=False, faceid_v2=False, weight_v2=False, combine_embeds="concat", neg_image=None):
cond = IPAdapterConditioning(mask, weight, weight_type, noise=noise, image=image, neg_image=neg_image, start_at=start_at, end_at=end_at, unfold_batch=unfold_batch, weight_v2=weight_v2, combine_embeds=combine_embeds)
return (cond, )
class RegionalIPAdapterColorMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"color_mask": ("IMAGE",),
"mask_color": ("STRING", {"multiline": False, "default": "#FFFFFF"}),
"image": ("IMAGE",),
"weight": ("FLOAT", {"default": 0.7, "min": -1, "max": 3, "step": 0.05}),
"noise": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"weight_type": (IPADAPTER_WEIGHT_TYPES(), ),
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"unfold_batch": ("BOOLEAN", {"default": False}),
},
"optional": {
"faceid_v2": ("BOOLEAN", {"default": False }),
"weight_v2": ("FLOAT", {"default": 1.0, "min": -1, "max": 3, "step": 0.05}),
"combine_embeds": (["concat", "add", "subtract", "average", "norm average"],),
"neg_image": ("IMAGE",),
}
}
RETURN_TYPES = ("REGIONAL_IPADAPTER", "MASK")
FUNCTION = "doit"
CATEGORY = "InspirePack/Regional"
@staticmethod
def doit(color_mask, mask_color, image, weight, noise, weight_type, start_at=0.0, end_at=1.0, unfold_batch=False, faceid_v2=False, weight_v2=False, combine_embeds="concat", neg_image=None):
mask = color_to_mask(color_mask, mask_color)
cond = IPAdapterConditioning(mask, weight, weight_type, noise=noise, image=image, neg_image=neg_image, start_at=start_at, end_at=end_at, unfold_batch=unfold_batch, weight_v2=weight_v2, combine_embeds=combine_embeds)
return (cond, mask)
class RegionalIPAdapterEncodedMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"embeds": ("EMBEDS",),
"weight": ("FLOAT", {"default": 0.7, "min": -1, "max": 3, "step": 0.05}),
"weight_type": (IPADAPTER_WEIGHT_TYPES(), ),
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"unfold_batch": ("BOOLEAN", {"default": False}),
},
"optional": {
"neg_embeds": ("EMBEDS",),
}
}
RETURN_TYPES = ("REGIONAL_IPADAPTER", )
FUNCTION = "doit"
CATEGORY = "InspirePack/Regional"
@staticmethod
def doit(mask, embeds, weight, weight_type, start_at=0.0, end_at=1.0, unfold_batch=False, neg_embeds=None):
cond = IPAdapterConditioning(mask, weight, weight_type, embeds=embeds, start_at=start_at, end_at=end_at, unfold_batch=unfold_batch, neg_embeds=neg_embeds)
return (cond, )
class RegionalIPAdapterEncodedColorMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"color_mask": ("IMAGE",),
"mask_color": ("STRING", {"multiline": False, "default": "#FFFFFF"}),
"embeds": ("EMBEDS",),
"weight": ("FLOAT", {"default": 0.7, "min": -1, "max": 3, "step": 0.05}),
"weight_type": (IPADAPTER_WEIGHT_TYPES(), ),
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"unfold_batch": ("BOOLEAN", {"default": False}),
},
"optional": {
"neg_embeds": ("EMBEDS",),
}
}
RETURN_TYPES = ("REGIONAL_IPADAPTER", "MASK")
FUNCTION = "doit"
CATEGORY = "InspirePack/Regional"
@staticmethod
def doit(color_mask, mask_color, embeds, weight, weight_type, start_at=0.0, end_at=1.0, unfold_batch=False, neg_embeds=None):
mask = color_to_mask(color_mask, mask_color)
cond = IPAdapterConditioning(mask, weight, weight_type, embeds=embeds, start_at=start_at, end_at=end_at, unfold_batch=unfold_batch, neg_embeds=neg_embeds)
return (cond, mask)
class ApplyRegionalIPAdapters:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"ipadapter_pipe": ("IPADAPTER_PIPE",),
"regional_ipadapter1": ("REGIONAL_IPADAPTER", ),
},
}
RETURN_TYPES = ("MODEL", )
FUNCTION = "doit"
CATEGORY = "InspirePack/Regional"
@staticmethod
def doit(**kwargs):
ipadapter_pipe = kwargs['ipadapter_pipe']
ipadapter, model, clip_vision, insightface, lora_loader = ipadapter_pipe
del kwargs['ipadapter_pipe']
for k, v in kwargs.items():
ipadapter_pipe = ipadapter, model, clip_vision, insightface, lora_loader
model = v.doit(ipadapter_pipe)
return (model, )
class RegionalSeedExplorerMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mask": ("MASK",),
"noise": ("NOISE",),
"seed_prompt": ("STRING", {"multiline": True, "dynamicPrompts": False, "pysssss.autocomplete": False}),
"enable_additional": ("BOOLEAN", {"default": True, "label_on": "true", "label_off": "false"}),
"additional_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"additional_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"noise_mode": (["GPU(=A1111)", "CPU"],),
},
"optional":
{"variation_method": (["linear", "slerp"],), }
}
RETURN_TYPES = ("NOISE",)
FUNCTION = "doit"
CATEGORY = "InspirePack/Regional"
@staticmethod
def doit(mask, noise, seed_prompt, enable_additional, additional_seed, additional_strength, noise_mode, variation_method='linear'):
device = comfy.model_management.get_torch_device()
noise_device = "cpu" if noise_mode == "CPU" else device
noise = noise.to(device)
mask = mask.to(device)
if len(mask.shape) == 2:
mask = mask.unsqueeze(0)
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(noise.shape[2], noise.shape[3]), mode="bilinear").squeeze(0)
try:
seed_prompt = seed_prompt.replace("\n", "")
items = seed_prompt.strip().split(",")
if items == ['']:
items = []
if enable_additional:
items.append((additional_seed, additional_strength))
noise = prompt_support.SeedExplorer.apply_variation(noise, items, noise_device, mask, variation_method=variation_method)
except Exception:
print(f"[ERROR] IGNORED: RegionalSeedExplorerColorMask is failed.")
traceback.print_exc()
noise = noise.cpu()
mask.cpu()
return (noise,)
class RegionalSeedExplorerColorMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"color_mask": ("IMAGE",),
"mask_color": ("STRING", {"multiline": False, "default": "#FFFFFF"}),
"noise": ("NOISE",),
"seed_prompt": ("STRING", {"multiline": True, "dynamicPrompts": False, "pysssss.autocomplete": False}),
"enable_additional": ("BOOLEAN", {"default": True, "label_on": "true", "label_off": "false"}),
"additional_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"additional_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"noise_mode": (["GPU(=A1111)", "CPU"],),
},
"optional":
{"variation_method": (["linear", "slerp"],), }
}
RETURN_TYPES = ("NOISE", "MASK")
FUNCTION = "doit"
CATEGORY = "InspirePack/Regional"
@staticmethod
def doit(color_mask, mask_color, noise, seed_prompt, enable_additional, additional_seed, additional_strength, noise_mode, variation_method='linear'):
device = comfy.model_management.get_torch_device()
noise_device = "cpu" if noise_mode == "CPU" else device
color_mask = color_mask.to(device)
noise = noise.to(device)
mask = color_to_mask(color_mask, mask_color)
original_mask = mask
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(noise.shape[2], noise.shape[3]), mode="bilinear").squeeze(0)
mask = mask.to(device)
try:
seed_prompt = seed_prompt.replace("\n", "")
items = seed_prompt.strip().split(",")
if items == ['']:
items = []
if enable_additional:
items.append((additional_seed, additional_strength))
noise = prompt_support.SeedExplorer.apply_variation(noise, items, noise_device, mask, variation_method=variation_method)
except Exception:
print(f"[ERROR] IGNORED: RegionalSeedExplorerColorMask is failed.")
traceback.print_exc()
color_mask.cpu()
noise = noise.cpu()
original_mask = original_mask.cpu()
return (noise, original_mask)
class ColorMaskToDepthMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"color_mask": ("IMAGE",),
"spec": ("STRING", {"multiline": True, "default": "#FF0000:1.0\n#000000:1.0"}),
"base_value": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0}),
"dilation": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
"flatten_method": (["override", "sum", "max"],),
},
}
RETURN_TYPES = ("MASK", )
FUNCTION = "doit"
CATEGORY = "InspirePack/Regional"
def doit(self, color_mask, spec, base_value, dilation, flatten_method):
specs = spec.split('\n')
pat = re.compile("(?P<color_code>#[A-F0-9]+):(?P<cfg>[0-9]+(.[0-9]*)?)")
masks = [torch.ones((1, color_mask.shape[1], color_mask.shape[2])) * base_value]
for x in specs:
match = pat.match(x)
if match:
mask = color_to_mask(color_mask=color_mask, mask_color=match['color_code']) * float(match['cfg'])
mask = utils.dilate_mask(mask, dilation)
masks.append(mask)
if masks:
masks = torch.cat(masks, dim=0)
if flatten_method == 'override':
masks = utils.flatten_non_zero_override(masks)
elif flatten_method == 'max':
masks = torch.max(masks, dim=0)[0]
else: # flatten_method == 'sum':
masks = torch.sum(masks, dim=0)
masks = torch.clamp(masks, min=0.0, max=1.0)
masks = masks.unsqueeze(0)
else:
masks = torch.tensor([])
return (masks, )
class RegionalCFG:
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL",),
"mask": ("MASK",),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "doit"
CATEGORY = "InspirePack/Regional"
@staticmethod
def doit(model, mask):
if len(mask.shape) == 2:
mask = mask.unsqueeze(0).unsqueeze(0)
elif len(mask.shape) == 3:
mask = mask.unsqueeze(0)
size = None
def regional_cfg(args):
nonlocal mask
nonlocal size
x = args['input']
if mask.device != x.device:
mask = mask.to(x.device)
if size != (x.shape[2], x.shape[3]):
size = (x.shape[2], x.shape[3])
mask = torch.nn.functional.interpolate(mask, size=size, mode='bilinear', align_corners=False)
cond_pred = args["cond_denoised"]
uncond_pred = args["uncond_denoised"]
cond_scale = args["cond_scale"]
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale * mask
return x - cfg_result
m = model.clone()
m.set_model_sampler_cfg_function(regional_cfg)
return (m,)
NODE_CLASS_MAPPINGS = {
"RegionalPromptSimple //Inspire": RegionalPromptSimple,
"RegionalPromptColorMask //Inspire": RegionalPromptColorMask,
"RegionalConditioningSimple //Inspire": RegionalConditioningSimple,
"RegionalConditioningColorMask //Inspire": RegionalConditioningColorMask,
"RegionalIPAdapterMask //Inspire": RegionalIPAdapterMask,
"RegionalIPAdapterColorMask //Inspire": RegionalIPAdapterColorMask,
"RegionalIPAdapterEncodedMask //Inspire": RegionalIPAdapterEncodedMask,
"RegionalIPAdapterEncodedColorMask //Inspire": RegionalIPAdapterEncodedColorMask,
"RegionalSeedExplorerMask //Inspire": RegionalSeedExplorerMask,
"RegionalSeedExplorerColorMask //Inspire": RegionalSeedExplorerColorMask,
"ToIPAdapterPipe //Inspire": ToIPAdapterPipe,
"FromIPAdapterPipe //Inspire": FromIPAdapterPipe,
"ApplyRegionalIPAdapters //Inspire": ApplyRegionalIPAdapters,
"RegionalCFG //Inspire": RegionalCFG,
"ColorMaskToDepthMask //Inspire": ColorMaskToDepthMask,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"RegionalPromptSimple //Inspire": "Regional Prompt Simple (Inspire)",
"RegionalPromptColorMask //Inspire": "Regional Prompt By Color Mask (Inspire)",
"RegionalConditioningSimple //Inspire": "Regional Conditioning Simple (Inspire)",
"RegionalConditioningColorMask //Inspire": "Regional Conditioning By Color Mask (Inspire)",
"RegionalIPAdapterMask //Inspire": "Regional IPAdapter Mask (Inspire)",
"RegionalIPAdapterColorMask //Inspire": "Regional IPAdapter By Color Mask (Inspire)",
"RegionalIPAdapterEncodedMask //Inspire": "Regional IPAdapter Encoded Mask (Inspire)",
"RegionalIPAdapterEncodedColorMask //Inspire": "Regional IPAdapter Encoded By Color Mask (Inspire)",
"RegionalSeedExplorerMask //Inspire": "Regional Seed Explorer By Mask (Inspire)",
"RegionalSeedExplorerColorMask //Inspire": "Regional Seed Explorer By Color Mask (Inspire)",
"ToIPAdapterPipe //Inspire": "ToIPAdapterPipe (Inspire)",
"FromIPAdapterPipe //Inspire": "FromIPAdapterPipe (Inspire)",
"ApplyRegionalIPAdapters //Inspire": "Apply Regional IPAdapters (Inspire)",
"RegionalCFG //Inspire": "Regional CFG (Inspire)",
"ColorMaskToDepthMask //Inspire": "Color Mask To Depth Mask (Inspire)",
}