flatcherlee's picture
Upload 2334 files
3d5837a verified
import nodes
import numpy as np
import torch
from .libs import utils
def normalize_size_base_64(w, h):
short_side = min(w, h)
remainder = short_side % 64
return short_side - remainder + (64 if remainder > 0 else 0)
class MediaPipeFaceMeshDetector:
def __init__(self, face, mouth, left_eyebrow, left_eye, left_pupil, right_eyebrow, right_eye, right_pupil, max_faces, is_segm):
self.face = face
self.mouth = mouth
self.left_eyebrow = left_eyebrow
self.left_eye = left_eye
self.left_pupil = left_pupil
self.right_eyebrow = right_eyebrow
self.right_eye = right_eye
self.right_pupil = right_pupil
self.is_segm = is_segm
self.max_faces = max_faces
self.override_bbox_by_segm = True
def detect(self, image, threshold, dilation, crop_factor, drop_size=1, crop_min_size=None, detailer_hook=None):
if 'MediaPipe-FaceMeshPreprocessor' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux',
"To use 'MediaPipeFaceMeshDetector' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.")
raise Exception(f"[ERROR] To use MediaPipeFaceMeshDetector, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'")
if 'MediaPipeFaceMeshToSEGS' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/ltdrdata/ComfyUI-Impact-Pack',
"To use 'MediaPipeFaceMeshDetector' node, 'Impact Pack' extension is required.")
raise Exception(f"[ERROR] To use MediaPipeFaceMeshDetector, you need to install 'ComfyUI-Impact-Pack'")
pre_obj = nodes.NODE_CLASS_MAPPINGS['MediaPipe-FaceMeshPreprocessor']
seg_obj = nodes.NODE_CLASS_MAPPINGS['MediaPipeFaceMeshToSEGS']
resolution = normalize_size_base_64(image.shape[2], image.shape[1])
facemesh_image = pre_obj().detect(image, self.max_faces, threshold, resolution=resolution)[0]
facemesh_image = nodes.ImageScale().upscale(facemesh_image, "bilinear", image.shape[2], image.shape[1], "disabled")[0]
segs = seg_obj().doit(facemesh_image, crop_factor, not self.is_segm, crop_min_size, drop_size, dilation,
self.face, self.mouth, self.left_eyebrow, self.left_eye, self.left_pupil,
self.right_eyebrow, self.right_eye, self.right_pupil)[0]
return segs
def setAux(self, x):
pass
class MediaPipe_FaceMesh_Preprocessor_wrapper:
def __init__(self, max_faces, min_confidence, upscale_factor=1.0):
self.max_faces = max_faces
self.min_confidence = min_confidence
self.upscale_factor = upscale_factor
def apply(self, image, mask=None):
if 'MediaPipe-FaceMeshPreprocessor' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux',
"To use 'MediaPipe_FaceMesh_Preprocessor_Provider_for_SEGS' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.")
raise Exception(f"[ERROR] To use MediaPipe_FaceMesh_Preprocessor_Provider_for_SEGS, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'")
if self.upscale_factor != 1.0:
image = nodes.ImageScaleBy().upscale(image, 'bilinear', self.upscale_factor)[0]
obj = nodes.NODE_CLASS_MAPPINGS['MediaPipe-FaceMeshPreprocessor']()
resolution = normalize_size_base_64(image.shape[2], image.shape[1])
return obj.detect(image, self.max_faces, self.min_confidence, resolution=resolution)[0]
class AnimeLineArt_Preprocessor_wrapper:
def apply(self, image, mask=None):
if 'AnimeLineArtPreprocessor' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux',
"To use 'AnimeLineArt_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.")
raise Exception(f"[ERROR] To use AnimeLineArt_Preprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'")
obj = nodes.NODE_CLASS_MAPPINGS['AnimeLineArtPreprocessor']()
resolution = normalize_size_base_64(image.shape[2], image.shape[1])
return obj.execute(image, resolution=resolution)[0]
class Manga2Anime_LineArt_Preprocessor_wrapper:
def apply(self, image, mask=None):
if 'Manga2Anime_LineArt_Preprocessor' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux',
"To use 'Manga2Anime_LineArt_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.")
raise Exception(f"[ERROR] To use Manga2Anime_LineArt_Preprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'")
obj = nodes.NODE_CLASS_MAPPINGS['Manga2Anime_LineArt_Preprocessor']()
resolution = normalize_size_base_64(image.shape[2], image.shape[1])
return obj.execute(image, resolution=resolution)[0]
class Color_Preprocessor_wrapper:
def apply(self, image, mask=None):
if 'ColorPreprocessor' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux',
"To use 'Color_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.")
raise Exception(f"[ERROR] To use Color_Preprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'")
obj = nodes.NODE_CLASS_MAPPINGS['ColorPreprocessor']()
resolution = normalize_size_base_64(image.shape[2], image.shape[1])
return obj.execute(image, resolution=resolution)[0]
class InpaintPreprocessor_wrapper:
def apply(self, image, mask=None):
if 'InpaintPreprocessor' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux',
"To use 'InpaintPreprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.")
raise Exception(f"[ERROR] To use InpaintPreprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'")
obj = nodes.NODE_CLASS_MAPPINGS['InpaintPreprocessor']()
if mask is None:
mask = torch.ones((image.shape[1], image.shape[2]), dtype=torch.float32, device="cpu").unsqueeze(0)
return obj.preprocess(image, mask)[0]
class TilePreprocessor_wrapper:
def __init__(self, pyrUp_iters):
self.pyrUp_iters = pyrUp_iters
def apply(self, image, mask=None):
if 'TilePreprocessor' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux',
"To use 'TilePreprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.")
raise Exception(f"[ERROR] To use TilePreprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'")
obj = nodes.NODE_CLASS_MAPPINGS['TilePreprocessor']()
resolution = normalize_size_base_64(image.shape[2], image.shape[1])
return obj.execute(image, self.pyrUp_iters, resolution=resolution)[0]
class MeshGraphormerDepthMapPreprocessorProvider_wrapper:
def apply(self, image, mask=None):
if 'MeshGraphormer-DepthMapPreprocessor' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux',
"To use 'MeshGraphormerDepthMapPreprocessorProvider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.")
raise Exception(f"[ERROR] To use MeshGraphormerDepthMapPreprocessorProvider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'")
obj = nodes.NODE_CLASS_MAPPINGS['MeshGraphormer-DepthMapPreprocessor']()
resolution = normalize_size_base_64(image.shape[2], image.shape[1])
return obj.execute(image, resolution=resolution)[0]
class LineArt_Preprocessor_wrapper:
def __init__(self, coarse):
self.coarse = coarse
def apply(self, image, mask=None):
if 'LineArtPreprocessor' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux',
"To use 'LineArt_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.")
raise Exception(f"[ERROR] To use LineArt_Preprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'")
coarse = 'enable' if self.coarse else 'disable'
obj = nodes.NODE_CLASS_MAPPINGS['LineArtPreprocessor']()
resolution = normalize_size_base_64(image.shape[2], image.shape[1])
return obj.execute(image, resolution=resolution, coarse=coarse)[0]
class OpenPose_Preprocessor_wrapper:
def __init__(self, detect_hand, detect_body, detect_face, upscale_factor=1.0):
self.detect_hand = detect_hand
self.detect_body = detect_body
self.detect_face = detect_face
self.upscale_factor = upscale_factor
def apply(self, image, mask=None):
if 'OpenposePreprocessor' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux',
"To use 'OpenPose_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.")
raise Exception(f"[ERROR] To use OpenPose_Preprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'")
detect_hand = 'enable' if self.detect_hand else 'disable'
detect_body = 'enable' if self.detect_body else 'disable'
detect_face = 'enable' if self.detect_face else 'disable'
if self.upscale_factor != 1.0:
image = nodes.ImageScaleBy().upscale(image, 'bilinear', self.upscale_factor)[0]
obj = nodes.NODE_CLASS_MAPPINGS['OpenposePreprocessor']()
resolution = normalize_size_base_64(image.shape[2], image.shape[1])
return obj.estimate_pose(image, detect_hand, detect_body, detect_face, resolution=resolution)['result'][0]
class DWPreprocessor_wrapper:
def __init__(self, detect_hand, detect_body, detect_face, upscale_factor=1.0, bbox_detector="yolox_l.onnx", pose_estimator="dw-ll_ucoco_384.onnx"):
self.detect_hand = detect_hand
self.detect_body = detect_body
self.detect_face = detect_face
self.upscale_factor = upscale_factor
self.bbox_detector = bbox_detector
self.pose_estimator = pose_estimator
def apply(self, image, mask=None):
if 'DWPreprocessor' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux',
"To use 'DWPreprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.")
raise Exception(f"[ERROR] To use DWPreprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'")
detect_hand = 'enable' if self.detect_hand else 'disable'
detect_body = 'enable' if self.detect_body else 'disable'
detect_face = 'enable' if self.detect_face else 'disable'
if self.upscale_factor != 1.0:
image = nodes.ImageScaleBy().upscale(image, 'bilinear', self.upscale_factor)[0]
obj = nodes.NODE_CLASS_MAPPINGS['DWPreprocessor']()
resolution = normalize_size_base_64(image.shape[2], image.shape[1])
return obj.estimate_pose(image, detect_hand, detect_body, detect_face, resolution=resolution, bbox_detector=self.bbox_detector, pose_estimator=self.pose_estimator)['result'][0]
class LeReS_DepthMap_Preprocessor_wrapper:
def __init__(self, rm_nearest, rm_background, boost):
self.rm_nearest = rm_nearest
self.rm_background = rm_background
self.boost = boost
def apply(self, image, mask=None):
if 'LeReS-DepthMapPreprocessor' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux',
"To use 'LeReS_DepthMap_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.")
raise Exception(f"[ERROR] To use LeReS_DepthMap_Preprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'")
boost = 'enable' if self.boost else 'disable'
obj = nodes.NODE_CLASS_MAPPINGS['LeReS-DepthMapPreprocessor']()
resolution = normalize_size_base_64(image.shape[2], image.shape[1])
return obj.execute(image, self.rm_nearest, self.rm_background, boost=boost, resolution=resolution)[0]
class MiDaS_DepthMap_Preprocessor_wrapper:
def __init__(self, a, bg_threshold):
self.a = a
self.bg_threshold = bg_threshold
def apply(self, image, mask=None):
if 'MiDaS-DepthMapPreprocessor' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux',
"To use 'MiDaS_DepthMap_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.")
raise Exception(f"[ERROR] To use MiDaS_DepthMap_Preprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'")
obj = nodes.NODE_CLASS_MAPPINGS['MiDaS-DepthMapPreprocessor']()
resolution = normalize_size_base_64(image.shape[2], image.shape[1])
return obj.execute(image, self.a, self.bg_threshold, resolution=resolution)[0]
class Zoe_DepthMap_Preprocessor_wrapper:
def apply(self, image, mask=None):
if 'Zoe-DepthMapPreprocessor' not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux',
"To use 'Zoe_DepthMap_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.")
raise Exception(f"[ERROR] To use Zoe_DepthMap_Preprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'")
obj = nodes.NODE_CLASS_MAPPINGS['Zoe-DepthMapPreprocessor']()
resolution = normalize_size_base_64(image.shape[2], image.shape[1])
return obj.execute(image, resolution=resolution)[0]
class HED_Preprocessor_wrapper:
def __init__(self, safe, nodename):
self.safe = safe
self.nodename = nodename
def apply(self, image, mask=None):
if self.nodename not in nodes.NODE_CLASS_MAPPINGS:
utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux',
f"To use '{self.nodename}_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.")
raise Exception(f"[ERROR] To use {self.nodename}_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'")
obj = nodes.NODE_CLASS_MAPPINGS[self.nodename]()
resolution = normalize_size_base_64(image.shape[2], image.shape[1])
return obj.execute(image, resolution=resolution, safe="enable" if self.safe else "disable")[0]
class Canny_Preprocessor_wrapper:
def __init__(self, low_threshold, high_threshold):
self.low_threshold = low_threshold
self.high_threshold = high_threshold
def apply(self, image, mask=None):
obj = nodes.NODE_CLASS_MAPPINGS['Canny']()
return obj.detect_edge(image, self.low_threshold, self.high_threshold)[0]
class OpenPose_Preprocessor_Provider_for_SEGS:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"detect_hand": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}),
"detect_body": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}),
"detect_face": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}),
"resolution_upscale_by": ("FLOAT", {"default": 1.0, "min": 0.5, "max": 100, "step": 0.1}),
}
}
RETURN_TYPES = ("SEGS_PREPROCESSOR",)
FUNCTION = "doit"
CATEGORY = "InspirePack/SEGS/ControlNet"
def doit(self, detect_hand, detect_body, detect_face, resolution_upscale_by):
obj = OpenPose_Preprocessor_wrapper(detect_hand, detect_body, detect_face, upscale_factor=resolution_upscale_by)
return (obj, )
class DWPreprocessor_Provider_for_SEGS:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"detect_hand": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}),
"detect_body": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}),
"detect_face": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}),
"resolution_upscale_by": ("FLOAT", {"default": 1.0, "min": 0.5, "max": 100, "step": 0.1}),
"bbox_detector": (
["yolox_l.torchscript.pt", "yolox_l.onnx", "yolo_nas_l_fp16.onnx", "yolo_nas_m_fp16.onnx", "yolo_nas_s_fp16.onnx"],
{"default": "yolox_l.onnx"}
),
"pose_estimator": (["dw-ll_ucoco_384_bs5.torchscript.pt", "dw-ll_ucoco_384.onnx", "dw-ll_ucoco.onnx"], {"default": "dw-ll_ucoco_384_bs5.torchscript.pt"})
}
}
RETURN_TYPES = ("SEGS_PREPROCESSOR",)
FUNCTION = "doit"
CATEGORY = "InspirePack/SEGS/ControlNet"
def doit(self, detect_hand, detect_body, detect_face, resolution_upscale_by, bbox_detector, pose_estimator):
obj = DWPreprocessor_wrapper(detect_hand, detect_body, detect_face, upscale_factor=resolution_upscale_by, bbox_detector=bbox_detector, pose_estimator=pose_estimator)
return (obj, )
class LeReS_DepthMap_Preprocessor_Provider_for_SEGS:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"rm_nearest": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100, "step": 0.1}),
"rm_background": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100, "step": 0.1})
},
"optional": {
"boost": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}),
}
}
RETURN_TYPES = ("SEGS_PREPROCESSOR",)
FUNCTION = "doit"
CATEGORY = "InspirePack/SEGS/ControlNet"
def doit(self, rm_nearest, rm_background, boost=False):
obj = LeReS_DepthMap_Preprocessor_wrapper(rm_nearest, rm_background, boost)
return (obj, )
class MiDaS_DepthMap_Preprocessor_Provider_for_SEGS:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"a": ("FLOAT", {"default": np.pi * 2.0, "min": 0.0, "max": np.pi * 5.0, "step": 0.05}),
"bg_threshold": ("FLOAT", {"default": 0.1, "min": 0, "max": 1, "step": 0.05})
}
}
RETURN_TYPES = ("SEGS_PREPROCESSOR",)
FUNCTION = "doit"
CATEGORY = "InspirePack/SEGS/ControlNet"
def doit(self, a, bg_threshold):
obj = MiDaS_DepthMap_Preprocessor_wrapper(a, bg_threshold)
return (obj, )
class Zoe_DepthMap_Preprocessor_Provider_for_SEGS:
@classmethod
def INPUT_TYPES(s):
return { "required": {} }
RETURN_TYPES = ("SEGS_PREPROCESSOR",)
FUNCTION = "doit"
CATEGORY = "InspirePack/SEGS/ControlNet"
def doit(self):
obj = Zoe_DepthMap_Preprocessor_wrapper()
return (obj, )
class Canny_Preprocessor_Provider_for_SEGS:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"low_threshold": ("FLOAT", {"default": 0.4, "min": 0.01, "max": 0.99, "step": 0.01}),
"high_threshold": ("FLOAT", {"default": 0.8, "min": 0.01, "max": 0.99, "step": 0.01})
}
}
RETURN_TYPES = ("SEGS_PREPROCESSOR",)
FUNCTION = "doit"
CATEGORY = "InspirePack/SEGS/ControlNet"
def doit(self, low_threshold, high_threshold):
obj = Canny_Preprocessor_wrapper(low_threshold, high_threshold)
return (obj, )
class HEDPreprocessor_Provider_for_SEGS:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"safe": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"})
}
}
RETURN_TYPES = ("SEGS_PREPROCESSOR",)
FUNCTION = "doit"
CATEGORY = "InspirePack/SEGS/ControlNet"
def doit(self, safe):
obj = HED_Preprocessor_wrapper(safe, "HEDPreprocessor")
return (obj, )
class FakeScribblePreprocessor_Provider_for_SEGS(HEDPreprocessor_Provider_for_SEGS):
def doit(self, safe):
obj = HED_Preprocessor_wrapper(safe, "FakeScribblePreprocessor")
return (obj, )
class MediaPipe_FaceMesh_Preprocessor_Provider_for_SEGS:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"max_faces": ("INT", {"default": 10, "min": 1, "max": 50, "step": 1}),
"min_confidence": ("FLOAT", {"default": 0.5, "min": 0.01, "max": 1.0, "step": 0.01}),
"resolution_upscale_by": ("FLOAT", {"default": 1.0, "min": 0.5, "max": 100, "step": 0.1}),
}
}
RETURN_TYPES = ("SEGS_PREPROCESSOR",)
FUNCTION = "doit"
CATEGORY = "InspirePack/SEGS/ControlNet"
def doit(self, max_faces, min_confidence, resolution_upscale_by):
obj = MediaPipe_FaceMesh_Preprocessor_wrapper(max_faces, min_confidence, upscale_factor=resolution_upscale_by)
return (obj, )
class MediaPipeFaceMeshDetectorProvider:
@classmethod
def INPUT_TYPES(s):
bool_true_widget = ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"})
bool_false_widget = ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"})
return {"required": {
"max_faces": ("INT", {"default": 10, "min": 1, "max": 50, "step": 1}),
"face": bool_true_widget,
"mouth": bool_false_widget,
"left_eyebrow": bool_false_widget,
"left_eye": bool_false_widget,
"left_pupil": bool_false_widget,
"right_eyebrow": bool_false_widget,
"right_eye": bool_false_widget,
"right_pupil": bool_false_widget,
}}
RETURN_TYPES = ("BBOX_DETECTOR", "SEGM_DETECTOR")
FUNCTION = "doit"
CATEGORY = "InspirePack/Detector"
def doit(self, max_faces, face, mouth, left_eyebrow, left_eye, left_pupil, right_eyebrow, right_eye, right_pupil):
bbox_detector = MediaPipeFaceMeshDetector(face, mouth, left_eyebrow, left_eye, left_pupil, right_eyebrow, right_eye, right_pupil, max_faces, is_segm=False)
segm_detector = MediaPipeFaceMeshDetector(face, mouth, left_eyebrow, left_eye, left_pupil, right_eyebrow, right_eye, right_pupil, max_faces, is_segm=True)
return (bbox_detector, segm_detector)
class AnimeLineArt_Preprocessor_Provider_for_SEGS:
@classmethod
def INPUT_TYPES(s):
return {"required": {}}
RETURN_TYPES = ("SEGS_PREPROCESSOR",)
FUNCTION = "doit"
CATEGORY = "InspirePack/SEGS/ControlNet"
def doit(self):
obj = AnimeLineArt_Preprocessor_wrapper()
return (obj, )
class Manga2Anime_LineArt_Preprocessor_Provider_for_SEGS:
@classmethod
def INPUT_TYPES(s):
return {"required": {}}
RETURN_TYPES = ("SEGS_PREPROCESSOR",)
FUNCTION = "doit"
CATEGORY = "InspirePack/SEGS/ControlNet"
def doit(self):
obj = Manga2Anime_LineArt_Preprocessor_wrapper()
return (obj, )
class LineArt_Preprocessor_Provider_for_SEGS:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"coarse": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}),
}}
RETURN_TYPES = ("SEGS_PREPROCESSOR",)
FUNCTION = "doit"
CATEGORY = "InspirePack/SEGS/ControlNet"
def doit(self, coarse):
obj = LineArt_Preprocessor_wrapper(coarse)
return (obj, )
class Color_Preprocessor_Provider_for_SEGS:
@classmethod
def INPUT_TYPES(s):
return {"required": {}}
RETURN_TYPES = ("SEGS_PREPROCESSOR",)
FUNCTION = "doit"
CATEGORY = "InspirePack/SEGS/ControlNet"
def doit(self):
obj = Color_Preprocessor_wrapper()
return (obj, )
class InpaintPreprocessor_Provider_for_SEGS:
@classmethod
def INPUT_TYPES(s):
return {"required": {}}
RETURN_TYPES = ("SEGS_PREPROCESSOR",)
FUNCTION = "doit"
CATEGORY = "InspirePack/SEGS/ControlNet"
def doit(self):
obj = InpaintPreprocessor_wrapper()
return (obj, )
class TilePreprocessor_Provider_for_SEGS:
@classmethod
def INPUT_TYPES(s):
return {"required": {'pyrUp_iters': ("INT", {"default": 3, "min": 1, "max": 10, "step": 1})}}
RETURN_TYPES = ("SEGS_PREPROCESSOR",)
FUNCTION = "doit"
CATEGORY = "InspirePack/SEGS/ControlNet"
def doit(self, pyrUp_iters):
obj = TilePreprocessor_wrapper(pyrUp_iters)
return (obj, )
class MeshGraphormerDepthMapPreprocessorProvider_for_SEGS:
@classmethod
def INPUT_TYPES(s):
return {"required": {}}
RETURN_TYPES = ("SEGS_PREPROCESSOR",)
FUNCTION = "doit"
CATEGORY = "InspirePack/SEGS/ControlNet"
def doit(self):
obj = MeshGraphormerDepthMapPreprocessorProvider_wrapper()
return (obj, )
NODE_CLASS_MAPPINGS = {
"OpenPose_Preprocessor_Provider_for_SEGS //Inspire": OpenPose_Preprocessor_Provider_for_SEGS,
"DWPreprocessor_Provider_for_SEGS //Inspire": DWPreprocessor_Provider_for_SEGS,
"MiDaS_DepthMap_Preprocessor_Provider_for_SEGS //Inspire": MiDaS_DepthMap_Preprocessor_Provider_for_SEGS,
"LeRes_DepthMap_Preprocessor_Provider_for_SEGS //Inspire": LeReS_DepthMap_Preprocessor_Provider_for_SEGS,
# "Zoe_DepthMap_Preprocessor_Provider_for_SEGS //Inspire": Zoe_DepthMap_Preprocessor_Provider_for_SEGS,
"Canny_Preprocessor_Provider_for_SEGS //Inspire": Canny_Preprocessor_Provider_for_SEGS,
"MediaPipe_FaceMesh_Preprocessor_Provider_for_SEGS //Inspire": MediaPipe_FaceMesh_Preprocessor_Provider_for_SEGS,
"HEDPreprocessor_Provider_for_SEGS //Inspire": HEDPreprocessor_Provider_for_SEGS,
"FakeScribblePreprocessor_Provider_for_SEGS //Inspire": FakeScribblePreprocessor_Provider_for_SEGS,
"AnimeLineArt_Preprocessor_Provider_for_SEGS //Inspire": AnimeLineArt_Preprocessor_Provider_for_SEGS,
"Manga2Anime_LineArt_Preprocessor_Provider_for_SEGS //Inspire": Manga2Anime_LineArt_Preprocessor_Provider_for_SEGS,
"LineArt_Preprocessor_Provider_for_SEGS //Inspire": LineArt_Preprocessor_Provider_for_SEGS,
"Color_Preprocessor_Provider_for_SEGS //Inspire": Color_Preprocessor_Provider_for_SEGS,
"InpaintPreprocessor_Provider_for_SEGS //Inspire": InpaintPreprocessor_Provider_for_SEGS,
"TilePreprocessor_Provider_for_SEGS //Inspire": TilePreprocessor_Provider_for_SEGS,
"MeshGraphormerDepthMapPreprocessorProvider_for_SEGS //Inspire": MeshGraphormerDepthMapPreprocessorProvider_for_SEGS,
"MediaPipeFaceMeshDetectorProvider //Inspire": MediaPipeFaceMeshDetectorProvider,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"OpenPose_Preprocessor_Provider_for_SEGS //Inspire": "OpenPose Preprocessor Provider (SEGS)",
"DWPreprocessor_Provider_for_SEGS //Inspire": "DWPreprocessor Provider (SEGS)",
"MiDaS_DepthMap_Preprocessor_Provider_for_SEGS //Inspire": "MiDaS Depth Map Preprocessor Provider (SEGS)",
"LeRes_DepthMap_Preprocessor_Provider_for_SEGS //Inspire": "LeReS Depth Map Preprocessor Provider (SEGS)",
# "Zoe_DepthMap_Preprocessor_Provider_for_SEGS //Inspire": "Zoe Depth Map Preprocessor Provider (SEGS)",
"Canny_Preprocessor_Provider_for_SEGS //Inspire": "Canny Preprocessor Provider (SEGS)",
"MediaPipe_FaceMesh_Preprocessor_Provider_for_SEGS //Inspire": "MediaPipe FaceMesh Preprocessor Provider (SEGS)",
"HEDPreprocessor_Provider_for_SEGS //Inspire": "HED Preprocessor Provider (SEGS)",
"FakeScribblePreprocessor_Provider_for_SEGS //Inspire": "Fake Scribble Preprocessor Provider (SEGS)",
"AnimeLineArt_Preprocessor_Provider_for_SEGS //Inspire": "AnimeLineArt Preprocessor Provider (SEGS)",
"Manga2Anime_LineArt_Preprocessor_Provider_for_SEGS //Inspire": "Manga2Anime LineArt Preprocessor Provider (SEGS)",
"LineArt_Preprocessor_Provider_for_SEGS //Inspire": "LineArt Preprocessor Provider (SEGS)",
"Color_Preprocessor_Provider_for_SEGS //Inspire": "Color Preprocessor Provider (SEGS)",
"InpaintPreprocessor_Provider_for_SEGS //Inspire": "Inpaint Preprocessor Provider (SEGS)",
"TilePreprocessor_Provider_for_SEGS //Inspire": "Tile Preprocessor Provider (SEGS)",
"MeshGraphormerDepthMapPreprocessorProvider_for_SEGS //Inspire": "MeshGraphormer Depth Map Preprocessor Provider (SEGS)",
"MediaPipeFaceMeshDetectorProvider //Inspire": "MediaPipeFaceMesh Detector Provider",
}