from ..utils import common_annotator_call, create_node_input_types import comfy.model_management as model_management class DensePose_Preprocessor: @classmethod def INPUT_TYPES(s): return create_node_input_types( model=(["densepose_r50_fpn_dl.torchscript", "densepose_r101_fpn_dl.torchscript"], {"default": "densepose_r50_fpn_dl.torchscript"}), cmap=(["Viridis (MagicAnimate)", "Parula (CivitAI)"], {"default": "Viridis (MagicAnimate)"}) ) RETURN_TYPES = ("IMAGE",) FUNCTION = "execute" CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators" def execute(self, image, model, cmap, resolution=512): from controlnet_aux.densepose import DenseposeDetector model = DenseposeDetector \ .from_pretrained(filename=model) \ .to(model_management.get_torch_device()) return (common_annotator_call(model, image, cmap="viridis" if "Viridis" in cmap else "parula", resolution=resolution), ) NODE_CLASS_MAPPINGS = { "DensePosePreprocessor": DensePose_Preprocessor } NODE_DISPLAY_NAME_MAPPINGS = { "DensePosePreprocessor": "DensePose Estimator" }