import numpy as np
import time
import torch
import torch.nn.functional as F
import random
import math
import os
import re
import json
import hashlib
try:
    import cv2
except:
    print("OpenCV not installed")
    pass
from PIL import ImageGrab, ImageDraw, ImageFont, Image, ImageSequence, ImageOps

from nodes import MAX_RESOLUTION, SaveImage
from comfy_extras.nodes_mask import ImageCompositeMasked
from comfy.cli_args import args
from comfy.utils import ProgressBar, common_upscale
import folder_paths
import model_management

script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

class ImagePass:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
            },
        }
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "passthrough"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Passes the image through without modifying it.
"""

    def passthrough(self, image):
        return image,

class ColorMatch:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image_ref": ("IMAGE",),
                "image_target": ("IMAGE",),
                "method": (
            [   
                'mkl',
                'hm', 
                'reinhard', 
                'mvgd', 
                'hm-mvgd-hm', 
                'hm-mkl-hm',
            ], {
               "default": 'mkl'
            }),
            },
            "optional": {
                "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
            }
        }
    
    CATEGORY = "KJNodes/image"

    RETURN_TYPES = ("IMAGE",)
    RETURN_NAMES = ("image",)
    FUNCTION = "colormatch"
    DESCRIPTION = """
color-matcher enables color transfer across images which comes in handy for automatic  
color-grading of photographs, paintings and film sequences as well as light-field  
and stopmotion corrections.  

The methods behind the mappings are based on the approach from Reinhard et al.,  
the Monge-Kantorovich Linearization (MKL) as proposed by Pitie et al. and our analytical solution  
to a Multi-Variate Gaussian Distribution (MVGD) transfer in conjunction with classical histogram   
matching. As shown below our HM-MVGD-HM compound outperforms existing methods.   
https://github.com/hahnec/color-matcher/

"""
    
    def colormatch(self, image_ref, image_target, method, strength=1.0):
        try:
            from color_matcher import ColorMatcher
        except:
            raise Exception("Can't import color-matcher, did you install requirements.txt? Manual install: pip install color-matcher")
        cm = ColorMatcher()
        image_ref = image_ref.cpu()
        image_target = image_target.cpu()
        batch_size = image_target.size(0)
        out = []
        images_target = image_target.squeeze()
        images_ref = image_ref.squeeze()

        image_ref_np = images_ref.numpy()
        images_target_np = images_target.numpy()

        if image_ref.size(0) > 1 and image_ref.size(0) != batch_size:
            raise ValueError("ColorMatch: Use either single reference image or a matching batch of reference images.")

        for i in range(batch_size):
            image_target_np = images_target_np if batch_size == 1 else images_target[i].numpy()
            image_ref_np_i = image_ref_np if image_ref.size(0) == 1 else images_ref[i].numpy()
            try:
                image_result = cm.transfer(src=image_target_np, ref=image_ref_np_i, method=method)
            except BaseException as e:
                print(f"Error occurred during transfer: {e}")
                break
            # Apply the strength multiplier
            image_result = image_target_np + strength * (image_result - image_target_np)
            out.append(torch.from_numpy(image_result))
            
        out = torch.stack(out, dim=0).to(torch.float32)
        out.clamp_(0, 1)
        return (out,)
    
class SaveImageWithAlpha:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()
        self.type = "output"
        self.prefix_append = ""

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
                    {"images": ("IMAGE", ),
                    "mask": ("MASK", ),
                    "filename_prefix": ("STRING", {"default": "ComfyUI"})},
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images_alpha"
    OUTPUT_NODE = True
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Saves an image and mask as .PNG with the mask as the alpha channel. 
"""

    def save_images_alpha(self, images, mask, filename_prefix="ComfyUI_image_with_alpha", prompt=None, extra_pnginfo=None):
        from PIL.PngImagePlugin import PngInfo
        filename_prefix += self.prefix_append
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
        results = list()
        if mask.dtype == torch.float16:
            mask = mask.to(torch.float32)
        def file_counter():
            max_counter = 0
            # Loop through the existing files
            for existing_file in os.listdir(full_output_folder):
                # Check if the file matches the expected format
                match = re.fullmatch(fr"{filename}_(\d+)_?\.[a-zA-Z0-9]+", existing_file)
                if match:
                    # Extract the numeric portion of the filename
                    file_counter = int(match.group(1))
                    # Update the maximum counter value if necessary
                    if file_counter > max_counter:
                        max_counter = file_counter
            return max_counter

        for image, alpha in zip(images, mask):
            i = 255. * image.cpu().numpy()
            a = 255. * alpha.cpu().numpy()
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
            
             # Resize the mask to match the image size
            a_resized = Image.fromarray(a).resize(img.size, Image.LANCZOS)
            a_resized = np.clip(a_resized, 0, 255).astype(np.uint8)
            img.putalpha(Image.fromarray(a_resized, mode='L'))
            metadata = None
            if not args.disable_metadata:
                metadata = PngInfo()
                if prompt is not None:
                    metadata.add_text("prompt", json.dumps(prompt))
                if extra_pnginfo is not None:
                    for x in extra_pnginfo:
                        metadata.add_text(x, json.dumps(extra_pnginfo[x]))
           
            # Increment the counter by 1 to get the next available value
            counter = file_counter() + 1
            file = f"{filename}_{counter:05}.png"
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
            })

        return { "ui": { "images": results } }

class ImageConcanate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "image1": ("IMAGE",),
            "image2": ("IMAGE",),
            "direction": (
            [   'right',
                'down',
                'left',
                'up',
            ],
            {
            "default": 'right'
             }),
            "match_image_size": ("BOOLEAN", {"default": False}),
        }}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "concanate"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Concatenates the image2 to image1 in the specified direction.
"""

    def concanate(self, image1, image2, direction, match_image_size, first_image_shape=None):
        # Check if the batch sizes are different
        batch_size1 = image1.shape[0]
        batch_size2 = image2.shape[0]

        if batch_size1 != batch_size2:
            # Calculate the number of repetitions needed
            max_batch_size = max(batch_size1, batch_size2)
            repeats1 = max_batch_size // batch_size1
            repeats2 = max_batch_size // batch_size2
            
            # Repeat the images to match the largest batch size
            image1 = image1.repeat(repeats1, 1, 1, 1)
            image2 = image2.repeat(repeats2, 1, 1, 1)

        if match_image_size:
            # Use first_image_shape if provided; otherwise, default to image1's shape
            target_shape = first_image_shape if first_image_shape is not None else image1.shape

            original_height = image2.shape[1]
            original_width = image2.shape[2]
            original_aspect_ratio = original_width / original_height

            if direction in ['left', 'right']:
                # Match the height and adjust the width to preserve aspect ratio
                target_height = target_shape[1]  # B, H, W, C format
                target_width = int(target_height * original_aspect_ratio)
            elif direction in ['up', 'down']:
                # Match the width and adjust the height to preserve aspect ratio
                target_width = target_shape[2]  # B, H, W, C format
                target_height = int(target_width / original_aspect_ratio)
            
            # Adjust image2 to the expected format for common_upscale
            image2_for_upscale = image2.movedim(-1, 1)  # Move C to the second position (B, C, H, W)
            
            # Resize image2 to match the target size while preserving aspect ratio
            image2_resized = common_upscale(image2_for_upscale, target_width, target_height, "lanczos", "disabled")
            
            # Adjust image2 back to the original format (B, H, W, C) after resizing
            image2_resized = image2_resized.movedim(1, -1)
        else:
            image2_resized = image2

        # Concatenate based on the specified direction
        if direction == 'right':
            concatenated_image = torch.cat((image1, image2_resized), dim=2)  # Concatenate along width
        elif direction == 'down':
            concatenated_image = torch.cat((image1, image2_resized), dim=1)  # Concatenate along height
        elif direction == 'left':
            concatenated_image = torch.cat((image2_resized, image1), dim=2)  # Concatenate along width
        elif direction == 'up':
            concatenated_image = torch.cat((image2_resized, image1), dim=1)  # Concatenate along height
        return concatenated_image,
    
class ImageGridComposite2x2:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "image1": ("IMAGE",),
            "image2": ("IMAGE",),
            "image3": ("IMAGE",),
            "image4": ("IMAGE",),   
        }}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "compositegrid"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Concatenates the 4 input images into a 2x2 grid. 
"""

    def compositegrid(self, image1, image2, image3, image4):
        top_row = torch.cat((image1, image2), dim=2)
        bottom_row = torch.cat((image3, image4), dim=2)
        grid = torch.cat((top_row, bottom_row), dim=1)
        return (grid,)
    
class ImageGridComposite3x3:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "image1": ("IMAGE",),
            "image2": ("IMAGE",),
            "image3": ("IMAGE",),
            "image4": ("IMAGE",),
            "image5": ("IMAGE",),
            "image6": ("IMAGE",),
            "image7": ("IMAGE",),
            "image8": ("IMAGE",),
            "image9": ("IMAGE",),     
        }}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "compositegrid"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Concatenates the 9 input images into a 3x3 grid. 
"""

    def compositegrid(self, image1, image2, image3, image4, image5, image6, image7, image8, image9):
        top_row = torch.cat((image1, image2, image3), dim=2)
        mid_row = torch.cat((image4, image5, image6), dim=2)
        bottom_row = torch.cat((image7, image8, image9), dim=2)
        grid = torch.cat((top_row, mid_row, bottom_row), dim=1)
        return (grid,)
    
class ImageBatchTestPattern:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "batch_size": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}),
            "start_from": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
            "text_x": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
            "text_y": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
            "width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
            "height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
            "font": (folder_paths.get_filename_list("kjnodes_fonts"), ),
            "font_size": ("INT", {"default": 255,"min": 8, "max": 4096, "step": 1}),
        }}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "generatetestpattern"
    CATEGORY = "KJNodes/text"

    def generatetestpattern(self, batch_size, font, font_size, start_from, width, height, text_x, text_y):
        out = []
        # Generate the sequential numbers for each image
        numbers = np.arange(start_from, start_from + batch_size)
        font_path = folder_paths.get_full_path("kjnodes_fonts", font)

        for number in numbers:
            # Create a black image with the number as a random color text
            image = Image.new("RGB", (width, height), color='black')
            draw = ImageDraw.Draw(image)
            
            # Generate a random color for the text
            font_color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
            
            font = ImageFont.truetype(font_path, font_size)
            
            # Get the size of the text and position it in the center
            text = str(number)
           
            try:
                draw.text((text_x, text_y), text, font=font, fill=font_color, features=['-liga'])
            except:
                draw.text((text_x, text_y), text, font=font, fill=font_color,)
            
            # Convert the image to a numpy array and normalize the pixel values
            image_np = np.array(image).astype(np.float32) / 255.0
            image_tensor = torch.from_numpy(image_np).unsqueeze(0)
            out.append(image_tensor)
        out_tensor = torch.cat(out, dim=0)
  
        return (out_tensor,)

class ImageGrabPIL:

    @classmethod
    def IS_CHANGED(cls):

        return

    RETURN_TYPES = ("IMAGE",)
    RETURN_NAMES = ("image",)
    FUNCTION = "screencap"
    CATEGORY = "KJNodes/experimental"
    DESCRIPTION = """
Captures an area specified by screen coordinates.  
Can be used for realtime diffusion with autoqueue.
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
                 "y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
                 "width": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
                 "height": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
                 "num_frames": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}),
                 "delay": ("FLOAT", {"default": 0.1,"min": 0.0, "max": 10.0, "step": 0.01}),
        },
    } 

    def screencap(self, x, y, width, height, num_frames, delay):
        start_time = time.time()
        captures = []
        bbox = (x, y, x + width, y + height)
        
        for _ in range(num_frames):
            # Capture screen
            screen_capture = ImageGrab.grab(bbox=bbox)
            screen_capture_torch = torch.from_numpy(np.array(screen_capture, dtype=np.float32) / 255.0).unsqueeze(0)
            captures.append(screen_capture_torch)
            
            # Wait for a short delay if more than one frame is to be captured
            if num_frames > 1:
                time.sleep(delay)

        elapsed_time = time.time() - start_time
        print(f"screengrab took {elapsed_time} seconds.")
        
        return (torch.cat(captures, dim=0),)
    
class Screencap_mss:

    @classmethod
    def IS_CHANGED(cls):

        return

    RETURN_TYPES = ("IMAGE",)
    RETURN_NAMES = ("image",)
    FUNCTION = "screencap"
    CATEGORY = "KJNodes/experimental"
    DESCRIPTION = """
Captures an area specified by screen coordinates.  
Can be used for realtime diffusion with autoqueue.
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
                 "y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
                 "width": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
                 "height": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
                 "num_frames": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}),
                 "delay": ("FLOAT", {"default": 0.1,"min": 0.0, "max": 10.0, "step": 0.01}),
        },
    } 

    def screencap(self, x, y, width, height, num_frames, delay):
        from mss import mss
        captures = []
        with mss() as sct:
            bbox = {'top': y, 'left': x, 'width': width, 'height': height}
            
            for _ in range(num_frames):
                sct_img = sct.grab(bbox)
                img_np = np.array(sct_img)
                img_torch = torch.from_numpy(img_np[..., [2, 1, 0]]).float() / 255.0
                captures.append(img_torch)
                
                if num_frames > 1:
                    time.sleep(delay)
        
        return (torch.stack(captures, 0),)
    
class WebcamCaptureCV2:

    @classmethod
    def IS_CHANGED(cls):
        return

    RETURN_TYPES = ("IMAGE",)
    RETURN_NAMES = ("image",)
    FUNCTION = "capture"
    CATEGORY = "KJNodes/experimental"
    DESCRIPTION = """
Captures a frame from a webcam using CV2.  
Can be used for realtime diffusion with autoqueue.
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
                 "y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
                 "width": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
                 "height": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
                 "cam_index": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
                 "release": ("BOOLEAN", {"default": False}),
            },
        } 

    def capture(self, x, y, cam_index, width, height, release):
        # Check if the camera index has changed or the capture object doesn't exist
        if not hasattr(self, "cap") or self.cap is None or self.current_cam_index != cam_index:
            if hasattr(self, "cap") and self.cap is not None:
                self.cap.release()
            self.current_cam_index = cam_index
            self.cap = cv2.VideoCapture(cam_index)
            try:
                self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
                self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
            except:
                pass
            if not self.cap.isOpened():
                raise Exception("Could not open webcam")
    
        ret, frame = self.cap.read()
        if not ret:
            raise Exception("Failed to capture image from webcam")
    
        # Crop the frame to the specified bbox
        frame = frame[y:y+height, x:x+width]
        img_torch = torch.from_numpy(frame[..., [2, 1, 0]]).float() / 255.0
    
        if release:
            self.cap.release()
            self.cap = None
    
        return (img_torch.unsqueeze(0),)
    
class AddLabel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "image":("IMAGE",),  
            "text_x": ("INT", {"default": 10, "min": 0, "max": 4096, "step": 1}),
            "text_y": ("INT", {"default": 2, "min": 0, "max": 4096, "step": 1}),
            "height": ("INT", {"default": 48, "min": 0, "max": 4096, "step": 1}),
            "font_size": ("INT", {"default": 32, "min": 0, "max": 4096, "step": 1}),
            "font_color": ("STRING", {"default": "white"}),
            "label_color": ("STRING", {"default": "black"}),
            "font": (folder_paths.get_filename_list("kjnodes_fonts"), ),
            "text": ("STRING", {"default": "Text"}),
            "direction": (
            [   'up',
                'down',
                'left',
                'right',
                'overlay'
            ],
            {
            "default": 'up'
             }),
            },
            "optional":{
                "caption": ("STRING", {"default": "", "forceInput": True}),
            }
            }
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "addlabel"
    CATEGORY = "KJNodes/text"
    DESCRIPTION = """
Creates a new with the given text, and concatenates it to  
either above or below the input image.  
Note that this changes the input image's height!  
Fonts are loaded from this folder:  
ComfyUI/custom_nodes/ComfyUI-KJNodes/fonts
"""
        
    def addlabel(self, image, text_x, text_y, text, height, font_size, font_color, label_color, font, direction, caption=""):
        batch_size = image.shape[0]
        width = image.shape[2]
        
        font_path = os.path.join(script_directory, "fonts", "TTNorms-Black.otf") if font == "TTNorms-Black.otf" else folder_paths.get_full_path("kjnodes_fonts", font)
        
        def process_image(input_image, caption_text):
            if direction == 'overlay':
                pil_image = Image.fromarray((input_image.cpu().numpy() * 255).astype(np.uint8))
            else:
                label_image = Image.new("RGB", (width, height), label_color)
                pil_image = label_image
                
            draw = ImageDraw.Draw(pil_image)
            font = ImageFont.truetype(font_path, font_size)
            
            words = caption_text.split()
            
            lines = []
            current_line = []
            current_line_width = 0
            for word in words:
                word_width = font.getbbox(word)[2]
                if current_line_width + word_width <= width - 2 * text_x:
                    current_line.append(word)
                    current_line_width += word_width + font.getbbox(" ")[2] # Add space width
                else:
                    lines.append(" ".join(current_line))
                    current_line = [word]
                    current_line_width = word_width
            
            if current_line:
                lines.append(" ".join(current_line))
            
            y_offset = text_y
            for line in lines:
                try:
                    draw.text((text_x, y_offset), line, font=font, fill=font_color, features=['-liga'])
                except:
                    draw.text((text_x, y_offset), line, font=font, fill=font_color)
                y_offset += font_size # Move to the next line
                
            processed_image = torch.from_numpy(np.array(pil_image).astype(np.float32) / 255.0).unsqueeze(0)
            return processed_image
        
        if caption == "":
            processed_images = [process_image(img, text) for img in image]
        else:
            assert len(caption) == batch_size, f"Number of captions {(len(caption))} does not match number of images"
            processed_images = [process_image(img, cap) for img, cap in zip(image, caption)]
        processed_batch = torch.cat(processed_images, dim=0)

        # Combine images based on direction
        if direction == 'down':
            combined_images = torch.cat((image, processed_batch), dim=1)
        elif direction == 'up':
            combined_images = torch.cat((processed_batch, image), dim=1)
        elif direction == 'left':
            processed_batch = torch.rot90(processed_batch, 3, (2, 3)).permute(0, 3, 1, 2)
            combined_images = torch.cat((processed_batch, image), dim=2)
        elif direction == 'right':
            processed_batch = torch.rot90(processed_batch, 3, (2, 3)).permute(0, 3, 1, 2)
            combined_images = torch.cat((image, processed_batch), dim=2)
        else:
            combined_images = processed_batch
        
        return (combined_images,)
    
class GetImageSizeAndCount:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "image": ("IMAGE",),
        }}

    RETURN_TYPES = ("IMAGE","INT", "INT", "INT",)
    RETURN_NAMES = ("image", "width", "height", "count",)
    FUNCTION = "getsize"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Returns width, height and batch size of the image,  
and passes it through unchanged.  

"""

    def getsize(self, image):
        width = image.shape[2]
        height = image.shape[1]
        count = image.shape[0]
        return {"ui": {
            "text": [f"{count}x{width}x{height}"]}, 
            "result": (image, width, height, count) 
        }
    
class ImageBatchRepeatInterleaving:
    
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "repeat"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Repeats each image in a batch by the specified number of times.  
Example batch of 5 images: 0, 1 ,2, 3, 4  
with repeats 2 becomes batch of 10 images: 0, 0, 1, 1, 2, 2, 3, 3, 4, 4  
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "images": ("IMAGE",),
                 "repeats": ("INT", {"default": 1, "min": 1, "max": 4096}),
        },
    } 
    
    def repeat(self, images, repeats):
       
        repeated_images = torch.repeat_interleave(images, repeats=repeats, dim=0)
        return (repeated_images, )
    
class ImageUpscaleWithModelBatched:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "upscale_model": ("UPSCALE_MODEL",),
                              "images": ("IMAGE",),
                              "per_batch": ("INT", {"default": 16, "min": 1, "max": 4096, "step": 1}),
                              }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Same as ComfyUI native model upscaling node,  
but allows setting sub-batches for reduced VRAM usage.
"""
    def upscale(self, upscale_model, images, per_batch):
        
        device = model_management.get_torch_device()
        upscale_model.to(device)
        in_img = images.movedim(-1,-3)
        
        steps = in_img.shape[0]
        pbar = ProgressBar(steps)
        t = []
        
        for start_idx in range(0, in_img.shape[0], per_batch):
            sub_images = upscale_model(in_img[start_idx:start_idx+per_batch].to(device))
            t.append(sub_images.cpu())
            # Calculate the number of images processed in this batch
            batch_count = sub_images.shape[0]
            # Update the progress bar by the number of images processed in this batch
            pbar.update(batch_count)
        upscale_model.cpu()
        
        t = torch.cat(t, dim=0).permute(0, 2, 3, 1).cpu()

        return (t,)

class ImageNormalize_Neg1_To_1:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { 
                              "images": ("IMAGE",),
    
                              }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "normalize"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Normalize the images to be in the range [-1, 1]  
"""

    def normalize(self,images):
        images = images * 2.0 - 1.0
        return (images,)

class RemapImageRange:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { 
            "image": ("IMAGE",),
            "min": ("FLOAT", {"default": 0.0,"min": -10.0, "max": 1.0, "step": 0.01}),
            "max": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 10.0, "step": 0.01}),
            "clamp": ("BOOLEAN", {"default": True}),
            },
            }
    
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "remap"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Remaps the image values to the specified range. 
"""
        
    def remap(self, image, min, max, clamp):
        if image.dtype == torch.float16:
            image = image.to(torch.float32)
        image = min + image * (max - min)
        if clamp:
            image = torch.clamp(image, min=0.0, max=1.0)
        return (image, )

class SplitImageChannels:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { 
            "image": ("IMAGE",),
            },
            }
    
    RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "MASK")
    RETURN_NAMES = ("red", "green", "blue", "mask")
    FUNCTION = "split"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Splits image channels into images where the selected channel  
is repeated for all channels, and the alpha as a mask. 
"""
        
    def split(self, image):
        red = image[:, :, :, 0:1] # Red channel
        green = image[:, :, :, 1:2] # Green channel
        blue = image[:, :, :, 2:3] # Blue channel
        alpha = image[:, :, :, 3:4] # Alpha channel
        alpha = alpha.squeeze(-1)

        # Repeat the selected channel for all channels
        red = torch.cat([red, red, red], dim=3)
        green = torch.cat([green, green, green], dim=3)
        blue = torch.cat([blue, blue, blue], dim=3)
        return (red, green, blue, alpha)
    
class MergeImageChannels:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { 
            "red": ("IMAGE",),
            "green": ("IMAGE",),
            "blue": ("IMAGE",),
            
            },
            "optional": {
                "alpha": ("MASK", {"default": None}),
                },
            }
    
    RETURN_TYPES = ("IMAGE",)
    RETURN_NAMES = ("image",)
    FUNCTION = "merge"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Merges channel data into an image.  
"""
        
    def merge(self, red, green, blue, alpha=None):
        image = torch.stack([
        red[..., 0, None], # Red channel
        green[..., 1, None], # Green channel
        blue[..., 2, None]   # Blue channel
        ], dim=-1)
        image = image.squeeze(-2)
        if alpha is not None:
            image = torch.cat([image, alpha.unsqueeze(-1)], dim=-1)
        return (image,)

class ImagePadForOutpaintMasked:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "feathering": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
            },
            "optional": {
                "mask": ("MASK",),
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

    def expand_image(self, image, left, top, right, bottom, feathering, mask=None):
        if mask is not None:
            if torch.allclose(mask, torch.zeros_like(mask)):
                    print("Warning: The incoming mask is fully black. Handling it as None.")
                    mask = None
        B, H, W, C = image.size()

        new_image = torch.ones(
            (B, H + top + bottom, W + left + right, C),
            dtype=torch.float32,
        ) * 0.5

        new_image[:, top:top + H, left:left + W, :] = image

        if mask is None:
            new_mask = torch.ones(
                (B, H + top + bottom, W + left + right),
                dtype=torch.float32,
            )

            t = torch.zeros(
            (B, H, W),
            dtype=torch.float32
            )
        else:
            # If a mask is provided, pad it to fit the new image size
            mask = F.pad(mask, (left, right, top, bottom), mode='constant', value=0)
            mask = 1 - mask
            t = torch.zeros_like(mask)
        
        if feathering > 0 and feathering * 2 < H and feathering * 2 < W:

            for i in range(H):
                for j in range(W):
                    dt = i if top != 0 else H
                    db = H - i if bottom != 0 else H

                    dl = j if left != 0 else W
                    dr = W - j if right != 0 else W

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    if mask is None:
                        t[:, i, j] = v * v
                    else:
                        t[:, top + i, left + j] = v * v
        
        if mask is None:
            new_mask[:, top:top + H, left:left + W] = t
            return (new_image, new_mask,)
        else:
            return (new_image, mask,)

class ImagePadForOutpaintTargetSize:
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "target_width": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "target_height": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "feathering": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "upscale_method": (s.upscale_methods,),
            },
            "optional": {
                "mask": ("MASK",),
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

    def expand_image(self, image, target_width, target_height, feathering, upscale_method, mask=None):
        B, H, W, C = image.size()
        new_height = 0
        new_width = 0
         # Calculate the scaling factor while maintaining aspect ratio
        scaling_factor = min(target_width / W, target_height / H)
        
        # Check if the image needs to be downscaled
        if scaling_factor < 1:
            image = image.movedim(-1,1)
            # Calculate the new width and height after downscaling
            new_width = int(W * scaling_factor)
            new_height = int(H * scaling_factor)
            
            # Downscale the image
            image_scaled = common_upscale(image, new_width, new_height, upscale_method, "disabled").movedim(1,-1)
            if mask is not None:
                mask_scaled = mask.unsqueeze(0)  # Add an extra dimension for batch size
                mask_scaled = F.interpolate(mask_scaled, size=(new_height, new_width), mode="nearest")
                mask_scaled = mask_scaled.squeeze(0)  # Remove the extra dimension after interpolation
            else:
                mask_scaled = mask
        else:
            # If downscaling is not needed, use the original image dimensions
            image_scaled = image
            mask_scaled = mask

        # Calculate how much padding is needed to reach the target dimensions
        pad_top = max(0, (target_height - new_height) // 2)
        pad_bottom = max(0, target_height - new_height - pad_top)
        pad_left = max(0, (target_width - new_width) // 2)
        pad_right = max(0, target_width - new_width - pad_left)

        # Now call the original expand_image with the calculated padding
        return ImagePadForOutpaintMasked.expand_image(self, image_scaled, pad_left, pad_top, pad_right, pad_bottom, feathering, mask_scaled)
    
class ImageAndMaskPreview(SaveImage):
    def __init__(self):
        self.output_dir = folder_paths.get_temp_directory()
        self.type = "temp"
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
        self.compress_level = 4

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "mask_opacity": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                "mask_color": ("STRING", {"default": "255, 255, 255"}),
                "pass_through": ("BOOLEAN", {"default": False}),
             },
            "optional": {
                "image": ("IMAGE",),
                "mask": ("MASK",),                
            },
            "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
        }
    RETURN_TYPES = ("IMAGE",)
    RETURN_NAMES = ("composite",)
    FUNCTION = "execute"
    CATEGORY = "KJNodes"
    DESCRIPTION = """
Preview an image or a mask, when both inputs are used  
composites the mask on top of the image.
with pass_through on the preview is disabled and the  
composite is returned from the composite slot instead,  
this allows for the preview to be passed for video combine  
nodes for example.
"""

    def execute(self, mask_opacity, mask_color, pass_through, filename_prefix="ComfyUI", image=None, mask=None, prompt=None, extra_pnginfo=None):
        if mask is not None and image is None:
            preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
        elif mask is None and image is not None:
            preview = image
        elif mask is not None and image is not None:
            mask_adjusted = mask * mask_opacity
            mask_image = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3).clone()

            if ',' in mask_color:
                color_list = np.clip([int(channel) for channel in mask_color.split(',')], 0, 255) # RGB format
            else:
                mask_color = mask_color.lstrip('#')
                color_list = [int(mask_color[i:i+2], 16) for i in (0, 2, 4)] # Hex format
            mask_image[:, :, :, 0] = color_list[0] / 255 # Red channel
            mask_image[:, :, :, 1] = color_list[1] / 255 # Green channel
            mask_image[:, :, :, 2] = color_list[2] / 255 # Blue channel
            
            preview, = ImageCompositeMasked.composite(self, image, mask_image, 0, 0, True, mask_adjusted)
        if pass_through:
            return (preview, )
        return(self.save_images(preview, filename_prefix, prompt, extra_pnginfo))
        
class CrossFadeImages:
    
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "crossfadeimages"
    CATEGORY = "KJNodes/image"

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "images_1": ("IMAGE",),
                 "images_2": ("IMAGE",),
                 "interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],),
                 "transition_start_index": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
                 "transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
                 "start_level": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 1.0, "step": 0.01}),
                 "end_level": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 1.0, "step": 0.01}),
        },
    } 
    
    def crossfadeimages(self, images_1, images_2, transition_start_index, transitioning_frames, interpolation, start_level, end_level):

        def crossfade(images_1, images_2, alpha):
            crossfade = (1 - alpha) * images_1 + alpha * images_2
            return crossfade
        def ease_in(t):
            return t * t
        def ease_out(t):
            return 1 - (1 - t) * (1 - t)
        def ease_in_out(t):
            return 3 * t * t - 2 * t * t * t
        def bounce(t):
            if t < 0.5:
                return self.ease_out(t * 2) * 0.5
            else:
                return self.ease_in((t - 0.5) * 2) * 0.5 + 0.5
        def elastic(t):
            return math.sin(13 * math.pi / 2 * t) * math.pow(2, 10 * (t - 1))
        def glitchy(t):
            return t + 0.1 * math.sin(40 * t)
        def exponential_ease_out(t):
            return 1 - (1 - t) ** 4

        easing_functions = {
            "linear": lambda t: t,
            "ease_in": ease_in,
            "ease_out": ease_out,
            "ease_in_out": ease_in_out,
            "bounce": bounce,
            "elastic": elastic,
            "glitchy": glitchy,
            "exponential_ease_out": exponential_ease_out,
        }

        crossfade_images = []

        alphas = torch.linspace(start_level, end_level, transitioning_frames)
        for i in range(transitioning_frames):
            alpha = alphas[i]
            image1 = images_1[i + transition_start_index]
            image2 = images_2[i + transition_start_index]
            easing_function = easing_functions.get(interpolation)
            alpha = easing_function(alpha)  # Apply the easing function to the alpha value

            crossfade_image = crossfade(image1, image2, alpha)
            crossfade_images.append(crossfade_image)
            
        # Convert crossfade_images to tensor
        crossfade_images = torch.stack(crossfade_images, dim=0)
        # Get the last frame result of the interpolation
        last_frame = crossfade_images[-1]
        # Calculate the number of remaining frames from images_2
        remaining_frames = len(images_2) - (transition_start_index + transitioning_frames)
        # Crossfade the remaining frames with the last used alpha value
        for i in range(remaining_frames):
            alpha = alphas[-1]
            image1 = images_1[i + transition_start_index + transitioning_frames]
            image2 = images_2[i + transition_start_index + transitioning_frames]
            easing_function = easing_functions.get(interpolation)
            alpha = easing_function(alpha)  # Apply the easing function to the alpha value

            crossfade_image = crossfade(image1, image2, alpha)
            crossfade_images = torch.cat([crossfade_images, crossfade_image.unsqueeze(0)], dim=0)
        # Append the beginning of images_1
        beginning_images_1 = images_1[:transition_start_index]
        crossfade_images = torch.cat([beginning_images_1, crossfade_images], dim=0)
        return (crossfade_images, )

class GetImageRangeFromBatch:
    
    RETURN_TYPES = ("IMAGE", "MASK", )
    FUNCTION = "imagesfrombatch"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Creates a new batch using images from the input,  
batch, starting from start_index.
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "start_index": ("INT", {"default": 0,"min": -1, "max": 4096, "step": 1}),
                 "num_frames": ("INT", {"default": 1,"min": 1, "max": 4096, "step": 1}),
        },
        "optional": {
            "images": ("IMAGE",),
            "masks": ("MASK",),
        }
    } 
    
    def imagesfrombatch(self, start_index, num_frames, images=None, masks=None):

        chosen_images = None
        chosen_masks = None

        # Process images if provided
        if images is not None:
            if start_index == -1:
                start_index = len(images) - num_frames
            if start_index < 0 or start_index >= len(images):
                raise ValueError("Start index is out of range")
            end_index = start_index + num_frames
            if end_index > len(images):
                raise ValueError("End index is out of range")
            chosen_images = images[start_index:end_index]

        # Process masks if provided
        if masks is not None:
            if start_index == -1:
                start_index = len(masks) - num_frames
            if start_index < 0 or start_index >= len(masks):
                raise ValueError("Start index is out of range for masks")
            end_index = start_index + num_frames
            if end_index > len(masks):
                raise ValueError("End index is out of range for masks")
            chosen_masks = masks[start_index:end_index]

        return (chosen_images, chosen_masks,)
    
class GetImagesFromBatchIndexed:
    
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "indexedimagesfrombatch"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Selects and returns the images at the specified indices as an image batch.
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "images": ("IMAGE",),
                 "indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}),
        },
    } 
    
    def indexedimagesfrombatch(self, images, indexes):
        
        # Parse the indexes string into a list of integers
        index_list = [int(index.strip()) for index in indexes.split(',')]
        
        # Convert list of indices to a PyTorch tensor
        indices_tensor = torch.tensor(index_list, dtype=torch.long)
        
        # Select the images at the specified indices
        chosen_images = images[indices_tensor]
        
        return (chosen_images,)

class InsertImagesToBatchIndexed:
    
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "insertimagesfrombatch"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Inserts images at the specified indices into the original image batch.
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "original_images": ("IMAGE",),
                "images_to_insert": ("IMAGE",),
                "indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}),
            },
        }
    
    def insertimagesfrombatch(self, original_images, images_to_insert, indexes):
        
        # Parse the indexes string into a list of integers
        index_list = [int(index.strip()) for index in indexes.split(',')]
        
        # Convert list of indices to a PyTorch tensor
        indices_tensor = torch.tensor(index_list, dtype=torch.long)
        
        # Ensure the images_to_insert is a tensor
        if not isinstance(images_to_insert, torch.Tensor):
            images_to_insert = torch.tensor(images_to_insert)
        
        # Insert the images at the specified indices
        for index, image in zip(indices_tensor, images_to_insert):
            original_images[index] = image
        
        return (original_images,)

class ReplaceImagesInBatch:
    
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "replace"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Replaces the images in a batch, starting from the specified start index,  
with the replacement images.
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "original_images": ("IMAGE",),
                 "replacement_images": ("IMAGE",),
                 "start_index": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
        },
    } 
    
    def replace(self, original_images, replacement_images, start_index):
        images = None
        if start_index >= len(original_images):
            raise ValueError("GetImageRangeFromBatch: Start index is out of range")
        end_index = start_index + len(replacement_images)
        if end_index > len(original_images):
            raise ValueError("GetImageRangeFromBatch: End index is out of range")
         # Create a copy of the original_images tensor
        original_images_copy = original_images.clone()
        original_images_copy[start_index:end_index] = replacement_images
        images = original_images_copy
        return (images, )
    

class ReverseImageBatch:
    
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "reverseimagebatch"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Reverses the order of the images in a batch.
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "images": ("IMAGE",),
        },
    } 
    
    def reverseimagebatch(self, images):
        reversed_images = torch.flip(images, [0])
        return (reversed_images, )

class ImageBatchMulti:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
                "image_1": ("IMAGE", ),
                "image_2": ("IMAGE", ),
            },
    }

    RETURN_TYPES = ("IMAGE",)
    RETURN_NAMES = ("images",)
    FUNCTION = "combine"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Creates an image batch from multiple images.  
You can set how many inputs the node has,  
with the **inputcount** and clicking update.
"""

    def combine(self, inputcount, **kwargs):
        from nodes import ImageBatch
        image_batch_node = ImageBatch()
        image = kwargs["image_1"]
        for c in range(1, inputcount):
            new_image = kwargs[f"image_{c + 1}"]
            image, = image_batch_node.batch(image, new_image)
        return (image,)

class ImageAddMulti:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
                "image_1": ("IMAGE", ),
                "image_2": ("IMAGE", ),
                "blending": (
                [   'add',
                    'subtract',
                    'multiply',
                    'difference',
                ],
                {
                "default": 'add'
                }),
            },
    }

    RETURN_TYPES = ("IMAGE",)
    RETURN_NAMES = ("images",)
    FUNCTION = "add"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Add blends multiple images together.    
You can set how many inputs the node has,  
with the **inputcount** and clicking update.
"""

    def add(self, inputcount, blending, **kwargs):
        image = kwargs["image_1"]
        for c in range(1, inputcount):
            new_image = kwargs[f"image_{c + 1}"]
            if blending == "add":
                image = torch.add(image * 0.5, new_image * 0.5)
            elif blending == "subtract":
                image = torch.sub(image * 0.5, new_image * 0.5)
            elif blending == "multiply":
                image = torch.mul(image * 0.5, new_image * 0.5)
            elif blending == "difference":
                image = torch.sub(image, new_image)
        return (image,)    

class ImageConcatMulti:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
                "image_1": ("IMAGE", ),
                "image_2": ("IMAGE", ),
                "direction": (
                [   'right',
                    'down',
                    'left',
                    'up',
                ],
            {
            "default": 'right'
             }),
            "match_image_size": ("BOOLEAN", {"default": False}),
            },
    }

    RETURN_TYPES = ("IMAGE",)
    RETURN_NAMES = ("images",)
    FUNCTION = "combine"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Creates an image from multiple images.  
You can set how many inputs the node has,  
with the **inputcount** and clicking update.
"""

    def combine(self, inputcount, direction, match_image_size, **kwargs):
        image = kwargs["image_1"]
        first_image_shape = None
        if first_image_shape is None:
            first_image_shape = image.shape
        for c in range(1, inputcount):
            new_image = kwargs[f"image_{c + 1}"]
            image, = ImageConcanate.concanate(self, image, new_image, direction, match_image_size, first_image_shape=first_image_shape)
        first_image_shape = None
        return (image,)

class PreviewAnimation:
    def __init__(self):
        self.output_dir = folder_paths.get_temp_directory()
        self.type = "temp"
        self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
        self.compress_level = 1

    methods = {"default": 4, "fastest": 0, "slowest": 6}
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {
                     "fps": ("FLOAT", {"default": 8.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
                     },
                "optional": {
                    "images": ("IMAGE", ),
                    "masks": ("MASK", ),
                },
            }

    RETURN_TYPES = ()
    FUNCTION = "preview"
    OUTPUT_NODE = True
    CATEGORY = "KJNodes/image"

    def preview(self, fps, images=None, masks=None):
        filename_prefix = "AnimPreview"
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
        results = list()

        pil_images = []

        if images is not None and masks is not None:
            for image in images:
                i = 255. * image.cpu().numpy()
                img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
                pil_images.append(img)
            for mask in masks:
                if pil_images: 
                    mask_np = mask.cpu().numpy()
                    mask_np = np.clip(mask_np * 255, 0, 255).astype(np.uint8)  # Convert to values between 0 and 255
                    mask_img = Image.fromarray(mask_np, mode='L')
                    img = pil_images.pop(0)  # Remove and get the first image
                    img = img.convert("RGBA")  # Convert base image to RGBA

                    # Create a new RGBA image based on the grayscale mask
                    rgba_mask_img = Image.new("RGBA", img.size, (255, 255, 255, 255))
                    rgba_mask_img.putalpha(mask_img)  # Use the mask image as the alpha channel

                    # Composite the RGBA mask onto the base image
                    composited_img = Image.alpha_composite(img, rgba_mask_img)
                    pil_images.append(composited_img)  # Add the composited image back

        elif images is not None and masks is None:
            for image in images:
                i = 255. * image.cpu().numpy()
                img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
                pil_images.append(img)

        elif masks is not None and images is None:
            for mask in masks:
                mask_np = 255. * mask.cpu().numpy()
                mask_img = Image.fromarray(np.clip(mask_np, 0, 255).astype(np.uint8))
                pil_images.append(mask_img)
        else:
            print("PreviewAnimation: No images or masks provided")
            return { "ui": { "images": results, "animated": (None,), "text": "empty" }}

        num_frames = len(pil_images)

        c = len(pil_images)
        for i in range(0, c, num_frames):
            file = f"{filename}_{counter:05}_.webp"
            pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], lossless=False, quality=80, method=4)
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
            })
            counter += 1

        animated = num_frames != 1
        return { "ui": { "images": results, "animated": (animated,), "text": [f"{num_frames}x{pil_images[0].size[0]}x{pil_images[0].size[1]}"] } }
    
class ImageResizeKJ:
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
                "height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
                "upscale_method": (s.upscale_methods,),
                "keep_proportion": ("BOOLEAN", { "default": False }),
                "divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }),
            },
            "optional" : {
                "width_input": ("INT", { "forceInput": True}),
                "height_input": ("INT", { "forceInput": True}),
                "get_image_size": ("IMAGE",),
            }
        }

    RETURN_TYPES = ("IMAGE", "INT", "INT",)
    RETURN_NAMES = ("IMAGE", "width", "height",)
    FUNCTION = "resize"
    CATEGORY = "KJNodes/image"
    DESCRIPTION = """
Resizes the image to the specified width and height.  
Size can be retrieved from the inputs, and the final scale  
is  determined in this order of importance:  
- get_image_size  
- width_input and height_input  
- width and height widgets  
  
Keep proportions keeps the aspect ratio of the image, by  
highest dimension.  
"""

    def resize(self, image, width, height, keep_proportion, upscale_method, divisible_by, width_input=None, height_input=None, get_image_size=None):
        B, H, W, C = image.shape
        if width_input:
            width = width_input
        if height_input:
            height = height_input
        if get_image_size is not None:
            _, height, width, _ = get_image_size.shape

        if keep_proportion and get_image_size is None:
            # If one of the dimensions is zero, calculate it to maintain the aspect ratio
            if width == 0 and height != 0:
                ratio = height / H
                width = round(W * ratio)
            elif height == 0 and width != 0:
                ratio = width / W
                height = round(H * ratio)
            elif width != 0 and height != 0:
                # Scale based on which dimension is smaller in proportion to the desired dimensions
                ratio = min(width / W, height / H)
                width = round(W * ratio)
                height = round(H * ratio)
        else:
            if width == 0:
                width = W
            if height == 0:
                height = H
    
        if divisible_by > 1 and get_image_size is None:
            width = width - (width % divisible_by)
            height = height - (height % divisible_by)

        image = image.movedim(-1,1)
        scaled = common_upscale(image, width, height, upscale_method, 'disabled')
        scaled = scaled.movedim(1,-1)

        return(scaled, scaled.shape[2], scaled.shape[1],)
    
class LoadAndResizeImage:
    _color_channels = ["alpha", "red", "green", "blue"]
    @classmethod
    def INPUT_TYPES(s):
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
        return {"required":
                    {
                    "image": (sorted(files), {"image_upload": True}),
                    "resize": ("BOOLEAN", { "default": False }),
                    "width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
                    "height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
                    "repeat": ("INT", { "default": 1, "min": 1, "max": 4096, "step": 1, }),
                    "keep_proportion": ("BOOLEAN", { "default": False }),
                    "divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }),
                    "mask_channel": (s._color_channels, ), 
                    },
                }

    CATEGORY = "KJNodes/image"
    RETURN_TYPES = ("IMAGE", "MASK", "INT", "INT",)
    RETURN_NAMES = ("image", "mask", "width", "height",)
    FUNCTION = "load_image"

    def load_image(self, image, resize, width, height, repeat, keep_proportion, divisible_by, mask_channel):
        image_path = folder_paths.get_annotated_filepath(image)

        import node_helpers
        img = node_helpers.pillow(Image.open, image_path)
        
        output_images = []
        output_masks = []
        w, h = None, None

        excluded_formats = ['MPO']

        W, H = img.size
        if resize:
            if keep_proportion:
                ratio = min(width / W, height / H)
                width = round(W * ratio)
                height = round(H * ratio)
            else:
                if width == 0:
                    width = W
                if height == 0:
                    height = H

            if divisible_by > 1:
                width = width - (width % divisible_by)
                height = height - (height % divisible_by)
        else:
            width, height = W, H

        for i in ImageSequence.Iterator(img):
            i = node_helpers.pillow(ImageOps.exif_transpose, i)

            if i.mode == 'I':
                i = i.point(lambda i: i * (1 / 255))
            image = i.convert("RGB")

            if len(output_images) == 0:
                w = image.size[0]
                h = image.size[1]
            
            if image.size[0] != w or image.size[1] != h:
                continue
            if resize:
                image = image.resize((width, height), Image.Resampling.BILINEAR)

            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]
            mask = None
            c = mask_channel[0].upper()
            if c in i.getbands():
                if resize:
                    i = i.resize((width, height), Image.Resampling.BILINEAR)
                mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
                mask = torch.from_numpy(mask)
                if c == 'A':
                     mask = 1. - mask
            else:
                mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")

            output_images.append(image)
            output_masks.append(mask.unsqueeze(0))

        if len(output_images) > 1 and img.format not in excluded_formats:
            output_image = torch.cat(output_images, dim=0)
            output_mask = torch.cat(output_masks, dim=0)
        else:
            output_image = output_images[0]
            output_mask = output_masks[0]
            if repeat > 1:
                output_image = output_image.repeat(repeat, 1, 1, 1)
                output_mask = output_mask.repeat(repeat, 1, 1)

     
        return (output_image, output_mask, width, height)
        

    @classmethod
    def IS_CHANGED(s, image):
        image_path = folder_paths.get_annotated_filepath(image)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True