File size: 7,322 Bytes
ddf4b47
 
 
 
 
ae7b5f6
ddf4b47
e6614a9
9d1f362
ae7b5f6
08bf781
9d1f362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae7b5f6
ddf4b47
 
9d1f362
 
 
ddf4b47
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1f362
 
 
 
 
 
 
 
 
 
 
 
 
 
ddf4b47
 
 
9d1f362
 
 
 
 
 
ddf4b47
9d1f362
 
ddf4b47
91743df
ddf4b47
9d1f362
 
 
 
 
 
91743df
9d1f362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddf4b47
 
 
 
9d1f362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91743df
 
9d1f362
 
 
 
91743df
 
 
 
 
 
 
 
ddf4b47
9d1f362
 
 
91743df
9d1f362
ddf4b47
9d1f362
 
 
91743df
 
 
 
 
 
 
ddf4b47
9d1f362
 
 
 
 
 
ddf4b47
91743df
ddf4b47
 
 
91743df
ddf4b47
 
9d1f362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddf4b47
 
9d1f362
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import torch
import whisper
import streamlit as st
from groq import Groq
from dotenv import load_dotenv
from tempfile import NamedTemporaryFile

# Load environment variables
load_dotenv()
API_KEY = os.getenv("GROQ_API_KEY")
HF_TOKEN = os.getenv("HF_TOKEN")

# By using XTTS you agree to CPML license
os.environ["COQUI_TOS_AGREED"] = "1"

# Import TTS components
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir

# Download and configure XTTS model
print("Downloading Coqui XTTS V2 if not already downloaded")
from TTS.utils.manage import ModelManager

model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
ModelManager().download_model(model_name)
model_path = os.path.join(get_user_data_dir("tts"), model_name.replace("/", "--"))
print("XTTS downloaded")

config = XttsConfig()
config.load_json(os.path.join(model_path, "config.json"))

model = Xtts.init_from_config(config)
model.load_checkpoint(
    config,
    checkpoint_path=os.path.join(model_path, "model.pth"),
    vocab_path=os.path.join(model_path, "vocab.json"),
    eval=True,
    use_deepspeed=True,
)
if torch.cuda.is_available():
    model.cuda()

supported_languages = config.languages

# LLM Response Function
def get_llm_response(api_key, user_input):
    if not api_key:
        return "API key not found. Please set the GROQ_API_KEY environment variable."
    
    client = Groq(api_key=api_key)
    prompt = (
        "IMPORTANT: You are an AI assistant that MUST provide responses in 25 words or less.\n"
        "CRITICAL RULES:\n"
        "1. NEVER exceed 25 words unless absolutely necessary.\n"
        "2. Always give a complete sentence with full context.\n"
        "3. Answer directly and precisely.\n"
        "4. Use clear, simple language.\n"
        "5. Maintain a polite, professional tone.\n"
        "6. NO lists, bullet points, or multiple paragraphs.\n"
        "7. NEVER apologize for brevity - embrace it.\n"
        "Your response will be converted to speech. Maximum 25 words."
    )
    
    try:
        chat_completion = client.chat.completions.create(
            messages=[
                {"role": "system", "content": prompt},
                {"role": "user", "content": user_input}
            ],
            model="llama3-8b-8192",
            temperature=0.5,
            top_p=1,
            stream=False,
        )
        return chat_completion.choices[0].message.content
    except Exception as e:
        return f"Error with LLM: {str(e)}"

# Transcribe Audio
def transcribe_audio(audio_path, model_size="base"):
    try:
        model = whisper.load_model(model_size)
        result = model.transcribe(audio_path)
        return result["text"]
    except Exception as e:
        return f"Error transcribing audio: {str(e)}"

# Generate Speech using the configured XTTS model
def generate_speech(text, output_file, speaker_wav, language="en"):
    if not os.path.exists(speaker_wav):
        raise FileNotFoundError("Reference audio file not found. Please upload a valid audio.")
    
    if language not in supported_languages:
        st.warning(f"Language {language} is not supported. Defaulting to English.")
        language = "en"
    
    # Use the configured model directly
    try:
        import time
        t_latent = time.time()
        gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
            audio_path=speaker_wav, 
            gpt_cond_len=30, 
            gpt_cond_chunk_len=4,
            max_ref_length=60
        )
        
        out = model.inference(
            text,
            language,
            gpt_cond_latent,
            speaker_embedding,
            repetition_penalty=5.0,
            temperature=0.75,
        )
        
        # Save the audio to file
        torch.tensor(out["wav"]).unsqueeze(0).cpu().numpy()
        import soundfile as sf
        sf.write(output_file, out["wav"], 24000, 'PCM_24')
        
        return True, "Speech generated successfully"
    except Exception as e:
        return False, f"Error generating speech: {str(e)}"

# Streamlit App
def main():
    st.set_page_config(page_title="Vocal AI", layout="wide")
    
    st.title("VocaL AI - Voice Cloning Assistant")
    st.write("Clone your voice and interact with an AI assistant that responds in your voice!")
    
    st.sidebar.title("Settings")
    
    # Language selection
    language = st.sidebar.selectbox(
        "Output Language", 
        supported_languages,
        index=supported_languages.index("en") if "en" in supported_languages else 0
    )
    
    # TOS agreement
    agree_tos = st.sidebar.checkbox("I agree to the Coqui Public Model License (CPML)", value=False)
    
    import uuid
    
    col1, col2 = st.columns(2)
    
    with col1:
        st.header("Step 1: Provide Reference Voice")
        reference_audio = st.file_uploader("Upload Reference Audio", type=["wav", "mp3", "ogg"])
        ref_audio_path = None
        
        if reference_audio:
            with NamedTemporaryFile(delete=False, suffix=".wav") as temp_ref_audio:
                temp_ref_audio.write(reference_audio.read())
                ref_audio_path = temp_ref_audio.name
            st.audio(ref_audio_path)

    with col2:
        st.header("Step 2: Ask Something")
        # User Input (Text or Audio)
        input_type = st.radio("Choose Input Type", ("Text", "Upload Audio"))
        user_input = None

        if input_type == "Text":
            user_input = st.text_area("Enter your question or prompt here")
        else:
            user_audio = st.file_uploader("Upload your question as audio", type=["wav", "mp3", "ogg"])
            if user_audio:
                with NamedTemporaryFile(delete=False, suffix=".wav") as temp_user_audio:
                    temp_user_audio.write(user_audio.read())
                    st.audio(temp_user_audio.name)
                    user_input = transcribe_audio(temp_user_audio.name)
                    st.write(f"Transcribed: {user_input}")

    # Process and generate response
    if st.button("Generate AI Response in My Voice"):
        if not agree_tos:
            st.error("Please agree to the Coqui Public Model License to continue.")
            return
            
        if not ref_audio_path:
            st.error("Please upload reference audio.")
            return

        if not user_input:
            st.error("Please enter text or upload an audio question.")
            return

        with st.spinner("Processing..."):
            # Get AI Response
            llm_response = get_llm_response(API_KEY, user_input)
            st.subheader("AI Response:")
            st.write(llm_response)
            
            # Generate Speech
            output_audio_path = f"output_speech_{uuid.uuid4()}.wav"
            success, message = generate_speech(
                llm_response, 
                output_audio_path, 
                ref_audio_path, 
                language
            )
            
            if success:
                st.subheader("Listen to the response in your voice:")
                st.audio(output_audio_path, format="audio/wav")
            else:
                st.error(message)

if __name__ == "__main__":
    main()