Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# coding: utf-8 | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from nltk.stem import WordNetLemmatizer | |
import streamlit as st | |
import pickle | |
import pandas as pd | |
import numpy as np | |
import nltk | |
import regex as re | |
from nltk.corpus import stopwords | |
from nltk.tokenize import word_tokenize | |
from sklearn.ensemble import RandomForestClassifier | |
import transformers | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig | |
from scipy.special import softmax | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import ast | |
nltk.download('stopwords') | |
nltk.download('wordnet') | |
# Load the model | |
def load_model(): | |
with open('random_forest_model.pkl', 'rb') as file: | |
loaded_model = pickle.load(file) | |
return loaded_model | |
def load_vectorizer(): | |
with open('tfidf_vectorizer.pkl', 'rb') as file: | |
loaded_vectorizer = pickle.load(file) | |
return loaded_vectorizer | |
def ratings(list_of_reviews): | |
xidf = [] | |
stopwords = nltk.corpus.stopwords.words('english') | |
lemmatizer = WordNetLemmatizer() | |
review = re.sub('[^a-zA-Z]', ' ', list_of_reviews) | |
review = review.lower() | |
review = review.split() | |
review = [lemmatizer.lemmatize(word) for word in review if not word in set(stopwords)] | |
review = ' '.join(review) | |
xidf.append(review) | |
tf_idf_vectorizer = load_vectorizer() | |
# Transform the new review using the loaded vectorizer | |
tf_review = tf_idf_vectorizer.transform(xidf) | |
model = load_model() | |
prediction = model.predict(tf_review) | |
return prediction | |
def sentiment_analysis(texts): | |
MODEL = "cardiffnlp/twitter-roberta-base-sentiment" | |
task = 'sentiment' | |
tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
config = AutoConfig.from_pretrained(MODEL) | |
# PT | |
model = AutoModelForSequenceClassification.from_pretrained(MODEL) | |
results = [] | |
for text in texts: | |
encoded_input = tokenizer(text, return_tensors='pt', max_length=512, truncation=True) | |
output = model(**encoded_input) | |
scores = output[0][0].detach().numpy() | |
scores = softmax(scores) | |
results.append(scores.tolist()) | |
return results | |
def get_sentiment_label(row): | |
if row['positive_score'] > row['neutral_score'] and row['positive_score'] > row['negative_score']: | |
return 'positive' | |
elif row['negative_score'] > row['neutral_score'] and row['negative_score'] > row['positive_score']: | |
return 'negative' | |
else: | |
return 'neutral' | |
st.set_option('deprecation.showPyplotGlobalUse', False) | |
# Create two columns | |
col1, col2 = st.columns([0.5, 1.2]) # Adjust the ratio as needed | |
# Column 1: Image | |
with col1: | |
st.image("img2.png", width=200) # Adjust the path and width as needed | |
# Column 2: Text | |
with col2: | |
st.write(""" | |
# Ratings Prediction & Reviews Sentiment Analysis App | |
""") | |
st.write(" This app predicts **the average rating of a product, given a list of reviews and also displays the sentiment of these reviews**!") | |
st.write('---') | |
sidebar_selection = st.sidebar.radio("Select an option:", ("Ratings Prediction", "Sentiment Analysis")) | |
list_reviews = st.text_input("Enter the list of reviews: ") | |
sentiment_review = list_reviews | |
ratings_review = list_reviews | |
submit_button = st.button("Submit") | |
if sidebar_selection == "Ratings Prediction": | |
# Check if the submit button is clicked and the input is not empty | |
if submit_button and ratings_review: | |
rating_pred = ratings(ratings_review) | |
st.write(f"The predicted average rating for a product with the list of reviews above is: {rating_pred}") | |
elif submit_button: | |
# Display a message if the submit button is clicked but no review is provided | |
st.write("Please enter a review to get a prediction.") | |
elif sidebar_selection == "Sentiment Analysis": | |
if submit_button and sentiment_review: | |
# Create a DataFrame | |
# Split the string into a list of reviews | |
review_list = sentiment_review.split(',') | |
df = pd.DataFrame(review_list, columns=['Review']) | |
scores = sentiment_analysis(df['Review']) | |
df['negative_score'] = [score[0] for score in scores] | |
df['neutral_score'] = [score[1] for score in scores] | |
df['positive_score'] = [score[2] for score in scores] | |
df['sentiment'] = df.apply(get_sentiment_label, axis=1) | |
# Display the sentiment distribution chart using Streamlit | |
st.write("**Sentiment Distribution:**") | |
plt.figure(figsize=(8, 6)) | |
sns.countplot(data=df, x='sentiment', color='blue') | |
# Display values on top of the bars | |
for p in plt.gca().patches: | |
plt.gca().annotate(f'{p.get_height()}', (p.get_x() + p.get_width() / 2, p.get_height()), ha='center', | |
va='bottom') | |
# Set plot labels and title | |
plt.xlabel('Sentiment') | |
plt.ylabel('Count') | |
plt.title('Sentiment Distribution') | |
st.pyplot(plt) | |