Spaces:
Sleeping
Sleeping
Delete reviews_app.py
Browse files- reviews_app.py +0 -151
reviews_app.py
DELETED
@@ -1,151 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
-
from nltk.stem import WordNetLemmatizer
|
6 |
-
import streamlit as st
|
7 |
-
import pickle
|
8 |
-
import pandas as pd
|
9 |
-
import numpy as np
|
10 |
-
import nltk
|
11 |
-
import regex as re
|
12 |
-
from nltk.corpus import stopwords
|
13 |
-
from nltk.tokenize import word_tokenize
|
14 |
-
from sklearn.ensemble import RandomForestClassifier
|
15 |
-
import transformers
|
16 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
|
17 |
-
from scipy.special import softmax
|
18 |
-
import matplotlib.pyplot as plt
|
19 |
-
import seaborn as sns
|
20 |
-
import ast
|
21 |
-
|
22 |
-
|
23 |
-
# Load the model
|
24 |
-
def load_model():
|
25 |
-
with open('random_forest_model.pkl', 'rb') as file:
|
26 |
-
loaded_model = pickle.load(file)
|
27 |
-
return loaded_model
|
28 |
-
|
29 |
-
def load_vectorizer():
|
30 |
-
with open('tfidf_vectorizer.pkl', 'rb') as file:
|
31 |
-
loaded_vectorizer = pickle.load(file)
|
32 |
-
return loaded_vectorizer
|
33 |
-
|
34 |
-
|
35 |
-
def ratings(list_of_reviews):
|
36 |
-
xidf = []
|
37 |
-
stopwords = nltk.corpus.stopwords.words('english')
|
38 |
-
lemmatizer = WordNetLemmatizer()
|
39 |
-
review = re.sub('[^a-zA-Z]', ' ', list_of_reviews)
|
40 |
-
review = review.lower()
|
41 |
-
review = review.split()
|
42 |
-
review = [lemmatizer.lemmatize(word) for word in review if not word in set(stopwords)]
|
43 |
-
review = ' '.join(review)
|
44 |
-
xidf.append(review)
|
45 |
-
tf_idf_vectorizer = load_vectorizer()
|
46 |
-
# Transform the new review using the loaded vectorizer
|
47 |
-
tf_review = tf_idf_vectorizer.transform(xidf)
|
48 |
-
model = load_model()
|
49 |
-
prediction = model.predict(tf_review)
|
50 |
-
|
51 |
-
return prediction
|
52 |
-
|
53 |
-
def sentiment_analysis(texts):
|
54 |
-
MODEL = "cardiffnlp/twitter-roberta-base-sentiment"
|
55 |
-
task = 'sentiment'
|
56 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
57 |
-
config = AutoConfig.from_pretrained(MODEL)
|
58 |
-
|
59 |
-
# PT
|
60 |
-
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
61 |
-
|
62 |
-
results = []
|
63 |
-
for text in texts:
|
64 |
-
encoded_input = tokenizer(text, return_tensors='pt', max_length=512, truncation=True)
|
65 |
-
output = model(**encoded_input)
|
66 |
-
scores = output[0][0].detach().numpy()
|
67 |
-
scores = softmax(scores)
|
68 |
-
results.append(scores.tolist())
|
69 |
-
|
70 |
-
return results
|
71 |
-
|
72 |
-
def get_sentiment_label(row):
|
73 |
-
if row['positive_score'] > row['neutral_score'] and row['positive_score'] > row['negative_score']:
|
74 |
-
return 'positive'
|
75 |
-
elif row['negative_score'] > row['neutral_score'] and row['negative_score'] > row['positive_score']:
|
76 |
-
return 'negative'
|
77 |
-
else:
|
78 |
-
return 'neutral'
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
st.set_option('deprecation.showPyplotGlobalUse', False)
|
83 |
-
|
84 |
-
|
85 |
-
# Create two columns
|
86 |
-
col1, col2 = st.columns([0.5, 1.2]) # Adjust the ratio as needed
|
87 |
-
|
88 |
-
# Column 1: Image
|
89 |
-
with col1:
|
90 |
-
st.image("img2.png", width=200) # Adjust the path and width as needed
|
91 |
-
|
92 |
-
# Column 2: Text
|
93 |
-
with col2:
|
94 |
-
st.write("""
|
95 |
-
# Ratings Prediction & Reviews Sentiment Analysis App
|
96 |
-
""")
|
97 |
-
st.write(" This app predicts **the average rating of a product, given a list of reviews and also displays the sentiment of these reviews**!")
|
98 |
-
st.write('---')
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
sidebar_selection = st.sidebar.radio("Select an option:", ("Ratings Prediction", "Sentiment Analysis"))
|
103 |
-
|
104 |
-
list_reviews = st.text_input("Enter the list of reviews: ")
|
105 |
-
sentiment_review = list_reviews
|
106 |
-
ratings_review = list_reviews
|
107 |
-
submit_button = st.button("Submit")
|
108 |
-
|
109 |
-
if sidebar_selection == "Ratings Prediction":
|
110 |
-
# Check if the submit button is clicked and the input is not empty
|
111 |
-
if submit_button and ratings_review:
|
112 |
-
rating_pred = ratings(ratings_review)
|
113 |
-
st.write(f"The predicted average rating for a product with the list of reviews above is: {rating_pred}")
|
114 |
-
elif submit_button:
|
115 |
-
# Display a message if the submit button is clicked but no review is provided
|
116 |
-
st.write("Please enter a review to get a prediction.")
|
117 |
-
|
118 |
-
|
119 |
-
elif sidebar_selection == "Sentiment Analysis":
|
120 |
-
if submit_button and sentiment_review:
|
121 |
-
# Create a DataFrame
|
122 |
-
# Split the string into a list of reviews
|
123 |
-
review_list = sentiment_review.split(',')
|
124 |
-
df = pd.DataFrame(review_list, columns=['Review'])
|
125 |
-
scores = sentiment_analysis(df['Review'])
|
126 |
-
|
127 |
-
df['negative_score'] = [score[0] for score in scores]
|
128 |
-
df['neutral_score'] = [score[1] for score in scores]
|
129 |
-
df['positive_score'] = [score[2] for score in scores]
|
130 |
-
|
131 |
-
df['sentiment'] = df.apply(get_sentiment_label, axis=1)
|
132 |
-
|
133 |
-
# Display the sentiment distribution chart using Streamlit
|
134 |
-
st.write("**Sentiment Distribution:**")
|
135 |
-
plt.figure(figsize=(8, 6))
|
136 |
-
sns.countplot(data=df, x='sentiment', color='blue')
|
137 |
-
|
138 |
-
# Display values on top of the bars
|
139 |
-
for p in plt.gca().patches:
|
140 |
-
plt.gca().annotate(f'{p.get_height()}', (p.get_x() + p.get_width() / 2, p.get_height()), ha='center',
|
141 |
-
va='bottom')
|
142 |
-
|
143 |
-
# Set plot labels and title
|
144 |
-
plt.xlabel('Sentiment')
|
145 |
-
plt.ylabel('Count')
|
146 |
-
plt.title('Sentiment Distribution')
|
147 |
-
|
148 |
-
st.pyplot(plt)
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|