Spaces:
Runtime error
Runtime error
File size: 8,249 Bytes
09b15be 0909501 09b15be f160eaf 0909501 09b15be f160eaf 09b15be 0909501 f160eaf 09b15be 0909501 09b15be 0909501 09b15be 0909501 09b15be 5cc174c 09b15be f160eaf 09b15be 5f27df1 09b15be 0909501 09b15be 0909501 09b15be 0909501 09b15be 0909501 09b15be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import gradio as gr
import re
import torch
from PIL import Image
from transformers import AutoTokenizer, FuyuForCausalLM, FuyuImageProcessor, FuyuProcessor
model_id = "adept/fuyu-8b"
dtype = torch.bfloat16
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = FuyuForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=dtype)
processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=tokenizer)
CAPTION_PROMPT = "Generate a coco-style caption.\n"
DETAILED_CAPTION_PROMPT = "What is happening in this image?"
def predict(image, prompt):
# image = image.convert('RGB')
model_inputs = processor(text=prompt, images=[image])
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
generation_output = model.generate(**model_inputs, max_new_tokens=50)
prompt_len = model_inputs["input_ids"].shape[-1]
return tokenizer.decode(generation_output[0][prompt_len:], skip_special_tokens=True)
def caption(image, detailed_captioning):
if detailed_captioning:
caption_prompt = DETAILED_CAPTION_PROMPT
else:
caption_prompt = CAPTION_PROMPT
return predict(image, caption_prompt).lstrip()
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def scale_factor_to_fit(original_size, target_size=(1920, 1080)):
width, height = original_size
max_width, max_height = target_size
if width <= max_width and height <= max_height:
return 1.0
return min(max_width/width, max_height/height)
def tokens_to_box(tokens, original_size):
bbox_start = tokenizer.convert_tokens_to_ids("<0x00>")
bbox_end = tokenizer.convert_tokens_to_ids("<0x01>")
try:
# Assumes a single box
bbox_start_pos = (tokens == bbox_start).nonzero(as_tuple=True)[0].item()
bbox_end_pos = (tokens == bbox_end).nonzero(as_tuple=True)[0].item()
if bbox_end_pos != bbox_start_pos + 5:
return tokens
# Retrieve transformed coordinates from tokens
coords = tokenizer.convert_ids_to_tokens(tokens[bbox_start_pos+1:bbox_end_pos])
# Scale back to original image size and multiply by 2
scale = scale_factor_to_fit(original_size)
top, left, bottom, right = [2 * int(float(c)/scale) for c in coords]
# Replace the IDs so they get detokenized right
replacement = f" <box>{top}, {left}, {bottom}, {right}</box>"
replacement = tokenizer.tokenize(replacement)[1:]
replacement = tokenizer.convert_tokens_to_ids(replacement)
replacement = torch.tensor(replacement).to(tokens)
tokens = torch.cat([tokens[:bbox_start_pos], replacement, tokens[bbox_end_pos+1:]], 0)
return tokens
except:
gr.Error("Can't convert tokens.")
return tokens
def coords_from_response(response):
# y1, x1, y2, x2
pattern = r"<box>(\d+),\s*(\d+),\s*(\d+),\s*(\d+)</box>"
match = re.search(pattern, response)
if match:
# Unpack and change order
y1, x1, y2, x2 = [int(coord) for coord in match.groups()]
return (x1, y1, x2, y2)
else:
gr.Error("The string is malformed or does not match the expected pattern.")
def localize(image, query):
prompt= f"When presented with a box, perform OCR to extract text contained within it. If provided with text, generate the corresponding bounding box.\n{query}"
model_inputs = processor(text=prompt, images=[image])
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
generation_output = model.generate(**model_inputs, max_new_tokens=40)
prompt_len = model_inputs["input_ids"].shape[-1]
tokens = generation_output[0][prompt_len:]
tokens = tokens_to_box(tokens, image.size)
decoded = tokenizer.decode(tokens, skip_special_tokens=True)
coords = coords_from_response(decoded)
return image, [(coords, f"Location of \"{query}\"")]
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<h1 id="title">Fuyu Multimodal Demo</h1>
<h3><a href="https://hf.co/adept/fuyu-8b">Fuyu-8B</a> is a multimodal model that supports a variety of tasks combining text and image prompts.</h3>
For example, you can use it for captioning by asking it to describe an image. You can also ask it questions about an image, a task known as Visual Question Answering, or VQA. This demo lets you explore captioning and VQA, with more tasks coming soon :)
Learn more about the model in <a href="https://www.adept.ai/blog/fuyu-8b">our blog post</a>.
<br>
<br>
<strong>Note: This is a raw model release. We have not added further instruction-tuning, postprocessing or sampling strategies to control for undesirable outputs. The model may hallucinate, and you should expect to have to fine-tune the model for your use-case!</strong>
<h3>Play with Fuyu-8B in this demo! π¬</h3>
"""
)
with gr.Tab("Visual Question Answering"):
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Upload your Image", type="pil")
text_input = gr.Textbox(label="Ask a Question")
vqa_output = gr.Textbox(label="Output")
vqa_btn = gr.Button("Answer Visual Question")
gr.Examples(
[["assets/vqa_example_1.png", "How is this made?"], ["assets/vqa_example_2.png", "What is this flower and where is it's origin?"],
["assets/docvqa_example.png", "How many items are sold?"], ["assets/screen2words_ui_example.png", "What is this app about?"]],
inputs = [image_input, text_input],
outputs = [vqa_output],
fn=predict,
cache_examples=True,
label='Click on any Examples below to get VQA results quickly π'
)
with gr.Tab("Image Captioning"):
with gr.Row():
with gr.Column():
captioning_input = gr.Image(label="Upload your Image", type="pil")
detailed_captioning_checkbox = gr.Checkbox(label="Enable detailed captioning")
captioning_output = gr.Textbox(label="Output")
captioning_btn = gr.Button("Generate Caption")
gr.Examples(
[["assets/captioning_example_1.png", False], ["assets/captioning_example_2.png", True]],
inputs = [captioning_input, detailed_captioning_checkbox],
outputs = [captioning_output],
fn=caption,
cache_examples=True,
label='Click on any Examples below to get captioning results quickly π'
)
captioning_btn.click(fn=caption, inputs=[captioning_input, detailed_captioning_checkbox], outputs=captioning_output)
vqa_btn.click(fn=predict, inputs=[image_input, text_input], outputs=vqa_output)
with gr.Tab("Find Text in Screenshots"):
gr.Markdown("This demo is designed to locate text in desktop screenshots. Please, ensure to upload images of 1920x1080 for best results!")
with gr.Row():
with gr.Column():
localization_input = gr.Image(label="Upload your Image", type="pil")
query_input = gr.Textbox(label="Text to find")
localization_btn = gr.Button("Locate Text")
with gr.Column():
with gr.Row(height=800):
localization_output = gr.AnnotatedImage(label="Text Position")
gr.Examples(
[["assets/localization_example_1.jpeg", "Share your repair"]],
inputs = [localization_input, query_input],
outputs = [localization_output],
fn=localize,
cache_examples=True,
label='Click on any Examples below to get localization results quickly π'
)
localization_btn.click(fn=localize, inputs=[localization_input, query_input], outputs=localization_output)
demo.launch(server_name="0.0.0.0") |