Ii commited on
Commit
9e9cf07
·
verified ·
1 Parent(s): 9216db1

Update refacer.py

Browse files
Files changed (1) hide show
  1. refacer.py +121 -70
refacer.py CHANGED
@@ -1,5 +1,3 @@
1
- import io
2
- import gradio as gr
3
  import cv2
4
  import onnxruntime as rt
5
  import sys
@@ -24,19 +22,20 @@ import re
24
  import subprocess
25
 
26
  class RefacerMode(Enum):
27
- CPU, CUDA, COREML, TENSORRT = range(1, 5)
28
 
29
  class Refacer:
30
- def __init__(self, force_cpu=False, colab_performance=False):
31
  self.first_face = False
32
  self.force_cpu = force_cpu
33
  self.colab_performance = colab_performance
 
34
  self.__check_providers()
35
  self.total_mem = psutil.virtual_memory().total
36
  self.__init_apps()
37
 
38
  def __check_providers(self):
39
- if self.force_cpu:
40
  self.providers = ['CPUExecutionProvider']
41
  else:
42
  self.providers = rt.get_available_providers()
@@ -47,51 +46,62 @@ class Refacer:
47
 
48
  if len(self.providers) == 1 and 'CPUExecutionProvider' in self.providers:
49
  self.mode = RefacerMode.CPU
50
- self.use_num_cpus = mp.cpu_count() - 1
51
- self.sess_options.intra_op_num_threads = int(self.use_num_cpus / 3)
52
  print(f"CPU mode with providers {self.providers}")
53
  elif self.colab_performance:
54
  self.mode = RefacerMode.TENSORRT
55
- self.use_num_cpus = mp.cpu_count() - 1
56
- self.sess_options.intra_op_num_threads = int(self.use_num_cpus / 3)
57
  print(f"TENSORRT mode with providers {self.providers}")
58
  elif 'CoreMLExecutionProvider' in self.providers:
59
  self.mode = RefacerMode.COREML
60
- self.use_num_cpus = mp.cpu_count() - 1
61
- self.sess_options.intra_op_num_threads = int(self.use_num_cpus / 3)
62
  print(f"CoreML mode with providers {self.providers}")
63
  elif 'CUDAExecutionProvider' in self.providers:
64
  self.mode = RefacerMode.CUDA
65
  self.use_num_cpus = 2
66
  self.sess_options.intra_op_num_threads = 1
67
- if 'TensorrtExecutionProvider' in the providers:
68
  self.providers.remove('TensorrtExecutionProvider')
69
  print(f"CUDA mode with providers {self.providers}")
 
 
 
 
 
 
 
 
 
 
70
 
71
  def __init_apps(self):
72
  assets_dir = ensure_available('models', 'buffalo_l', root='~/.insightface')
73
 
74
  model_path = os.path.join(assets_dir, 'det_10g.onnx')
75
  sess_face = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
76
- self.face_detector = SCRFD(model_path, sess_face)
77
- self.face_detector.prepare(0, input_size=(640, 640))
78
 
79
- model_path = os.path.join(assets_dir, 'w600k_r50.onnx')
80
  sess_rec = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
81
- self.rec_app = ArcFaceONNX(model_path, sess_rec)
82
  self.rec_app.prepare(0)
83
 
84
  model_path = 'inswapper_128.onnx'
85
  sess_swap = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
86
- self.face_swapper = INSwapper(model_path, sess_swap)
87
 
88
  def prepare_faces(self, faces):
89
- self.replacement_faces = []
90
  for face in faces:
 
91
  if "origin" in face:
92
  face_threshold = face['threshold']
93
- bboxes1, kpss1 = self.face_detector.autodetect(face['origin'], max_num=1)
94
- if len(kpss1) < 1:
95
  raise Exception('No face detected on "Face to replace" image')
96
  feat_original = self.rec_app.get(face['origin'], kpss1[0])
97
  else:
@@ -99,13 +109,31 @@ class Refacer:
99
  self.first_face = True
100
  feat_original = None
101
  print('No origin image: First face change')
102
- _faces = self.__get_faces(face['destination'], max_num=1)
103
- if len(_faces) < 1:
 
104
  raise Exception('No face detected on "Destination face" image')
105
- self.replacement_faces.append((feat_original, _faces[0], face_threshold))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
 
107
- def __get_faces(self, frame, max_num=0):
108
- bboxes, kpss = self.face_detector.detect(frame, max_num=max_num, metric='default')
109
 
110
  if bboxes.shape[0] == 0:
111
  return []
@@ -121,91 +149,114 @@ class Refacer:
121
  ret.append(face)
122
  return ret
123
 
124
- def process_first_face(self, frame):
125
- faces = self.__get_faces(frame, max_num=1)
126
  if len(faces) != 0:
127
  frame = self.face_swapper.get(frame, faces[0], self.replacement_faces[0][1], paste_back=True)
128
  return frame
129
 
130
- def process_faces(self, frame):
131
- faces = self.__get_faces(frame, max_num=0)
132
  for rep_face in self.replacement_faces:
133
  for i in range(len(faces) - 1, -1, -1):
134
  sim = self.rec_app.compute_sim(rep_face[0], faces[i].embedding)
135
- if sim >= rep_face[2]:
136
  frame = self.face_swapper.get(frame, faces[i], rep_face[1], paste_back=True)
137
  del faces[i]
138
  break
139
  return frame
140
 
141
- def __check_video_has_audio(self, video_path):
142
  self.video_has_audio = False
143
  probe = ffmpeg.probe(video_path)
144
  audio_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'audio'), None)
145
  if audio_stream is not None:
146
  self.video_has_audio = True
147
-
148
- def reface_group(self, faces, frames):
149
- results = []
150
- with ThreadPoolExecutor(max_workers=self.use_num_cpus) as executor:
151
  if self.first_face:
152
- results = list(tqdm(executor.map(self.process_first_face, frames), total=len(frames), desc="Processing frames"))
153
  else:
154
- results = list(tqdm(executor.map(self.process_faces, frames), total=len(frames), desc="Processing frames"))
155
- return results
 
156
 
157
  def reface(self, video_path, faces):
158
  self.__check_video_has_audio(video_path)
 
159
  self.prepare_faces(faces)
160
 
161
  cap = cv2.VideoCapture(video_path)
162
  total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
163
  print(f"Total frames: {total_frames}")
164
-
165
  fps = cap.get(cv2.CAP_PROP_FPS)
166
  frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
167
  frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
168
 
169
- frames = []
170
- with tqdm(total=total_frames, desc="Extracting frames") as pbar:
 
 
 
 
171
  while cap.isOpened():
172
  flag, frame = cap.read()
173
- if flag and len(frame) > 0:
174
  frames.append(frame.copy())
175
  pbar.update()
176
  else:
177
  break
 
 
 
178
 
179
  cap.release()
180
  pbar.close()
181
 
182
- refaced_frames = self.reface_group(faces, frames)
183
-
184
- video_buffer = io.BytesIO()
185
- out = cv2.VideoWriter('temp.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (frame_width, frame_height))
186
-
187
- for frame in refaced_frames:
188
- out.write(frame)
189
- out.release()
190
-
191
- with open('temp.mp4', 'rb') as f:
192
- video_buffer.write(f.read())
193
- video_buffer.seek(0)
194
-
195
- os.remove('temp.mp4')
196
-
197
- return video_buffer
 
 
 
 
198
 
199
- # Gradio Code
200
- def run(*vars):
201
- video_path = vars[0]
202
- origins = vars[1:(num_faces + 1)]
203
- destinations = vars[(num_faces + 1):(num_faces * 2) + 1]
204
- thresholds = vars[(num_faces * 2) + 1:]
 
 
 
 
 
 
 
 
 
205
 
206
- faces = []
207
- for k in range(0, num_faces):
208
- if origins[k] is not None and destinations[k] is not None:
209
- faces.append({
210
- 'origin': origins[k],
211
- 'destination[_{{{CITATION{{{_1{](https://github.com/qixinbo/OneButtonDeepLearning/tree/6e209f40102a7acaeb5d5798da013758c0ff9cd3/FaceSwap%2Fmenus%2FFaceSwap%2Finsightface_func%2Finsightface%2Fapp%2Fface_analysis.py)[_{{{CITATION{{{_2{](https://github.com/pgtinsley/arcface_aman/tree/7beda0d69dc40acc0138525ca84f50ecda126d8c/python-package%2Finsightface%2Fapp%2Fface_analysis.py)
 
 
 
 
 
1
  import cv2
2
  import onnxruntime as rt
3
  import sys
 
22
  import subprocess
23
 
24
  class RefacerMode(Enum):
25
+ CPU, CUDA, COREML, TENSORRT = range(1, 5)
26
 
27
  class Refacer:
28
+ def __init__(self,force_cpu=False,colab_performance=False):
29
  self.first_face = False
30
  self.force_cpu = force_cpu
31
  self.colab_performance = colab_performance
32
+ self.__check_encoders()
33
  self.__check_providers()
34
  self.total_mem = psutil.virtual_memory().total
35
  self.__init_apps()
36
 
37
  def __check_providers(self):
38
+ if self.force_cpu :
39
  self.providers = ['CPUExecutionProvider']
40
  else:
41
  self.providers = rt.get_available_providers()
 
46
 
47
  if len(self.providers) == 1 and 'CPUExecutionProvider' in self.providers:
48
  self.mode = RefacerMode.CPU
49
+ self.use_num_cpus = mp.cpu_count()-1
50
+ self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
51
  print(f"CPU mode with providers {self.providers}")
52
  elif self.colab_performance:
53
  self.mode = RefacerMode.TENSORRT
54
+ self.use_num_cpus = mp.cpu_count()-1
55
+ self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
56
  print(f"TENSORRT mode with providers {self.providers}")
57
  elif 'CoreMLExecutionProvider' in self.providers:
58
  self.mode = RefacerMode.COREML
59
+ self.use_num_cpus = mp.cpu_count()-1
60
+ self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
61
  print(f"CoreML mode with providers {self.providers}")
62
  elif 'CUDAExecutionProvider' in self.providers:
63
  self.mode = RefacerMode.CUDA
64
  self.use_num_cpus = 2
65
  self.sess_options.intra_op_num_threads = 1
66
+ if 'TensorrtExecutionProvider' in self.providers:
67
  self.providers.remove('TensorrtExecutionProvider')
68
  print(f"CUDA mode with providers {self.providers}")
69
+ """
70
+ elif 'TensorrtExecutionProvider' in self.providers:
71
+ self.mode = RefacerMode.TENSORRT
72
+ #self.use_num_cpus = 1
73
+ #self.sess_options.intra_op_num_threads = 1
74
+ self.use_num_cpus = mp.cpu_count()-1
75
+ self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
76
+ print(f"TENSORRT mode with providers {self.providers}")
77
+ """
78
+
79
 
80
  def __init_apps(self):
81
  assets_dir = ensure_available('models', 'buffalo_l', root='~/.insightface')
82
 
83
  model_path = os.path.join(assets_dir, 'det_10g.onnx')
84
  sess_face = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
85
+ self.face_detector = SCRFD(model_path,sess_face)
86
+ self.face_detector.prepare(0,input_size=(640, 640))
87
 
88
+ model_path = os.path.join(assets_dir , 'w600k_r50.onnx')
89
  sess_rec = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
90
+ self.rec_app = ArcFaceONNX(model_path,sess_rec)
91
  self.rec_app.prepare(0)
92
 
93
  model_path = 'inswapper_128.onnx'
94
  sess_swap = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
95
+ self.face_swapper = INSwapper(model_path,sess_swap)
96
 
97
  def prepare_faces(self, faces):
98
+ self.replacement_faces=[]
99
  for face in faces:
100
+ #image1 = cv2.imread(face.origin)
101
  if "origin" in face:
102
  face_threshold = face['threshold']
103
+ bboxes1, kpss1 = self.face_detector.autodetect(face['origin'], max_num=1)
104
+ if len(kpss1)<1:
105
  raise Exception('No face detected on "Face to replace" image')
106
  feat_original = self.rec_app.get(face['origin'], kpss1[0])
107
  else:
 
109
  self.first_face = True
110
  feat_original = None
111
  print('No origin image: First face change')
112
+ #image2 = cv2.imread(face.destination)
113
+ _faces = self.__get_faces(face['destination'],max_num=1)
114
+ if len(_faces)<1:
115
  raise Exception('No face detected on "Destination face" image')
116
+ self.replacement_faces.append((feat_original,_faces[0],face_threshold))
117
+
118
+ def __convert_video(self,video_path,output_video_path):
119
+ if self.video_has_audio:
120
+ print("Merging audio with the refaced video...")
121
+ new_path = output_video_path + str(random.randint(0,999)) + "_c.mp4"
122
+ #stream = ffmpeg.input(output_video_path)
123
+ in1 = ffmpeg.input(output_video_path)
124
+ in2 = ffmpeg.input(video_path)
125
+ out = ffmpeg.output(in1.video, in2.audio, new_path,video_bitrate=self.ffmpeg_video_bitrate,vcodec=self.ffmpeg_video_encoder)
126
+ out.run(overwrite_output=True,quiet=True)
127
+ else:
128
+ new_path = output_video_path
129
+ print("The video doesn't have audio, so post-processing is not necessary")
130
+
131
+ print(f"The process has finished.\nThe refaced video can be found at {os.path.abspath(new_path)}")
132
+ return new_path
133
+
134
+ def __get_faces(self,frame,max_num=0):
135
 
136
+ bboxes, kpss = self.face_detector.detect(frame,max_num=max_num,metric='default')
 
137
 
138
  if bboxes.shape[0] == 0:
139
  return []
 
149
  ret.append(face)
150
  return ret
151
 
152
+ def process_first_face(self,frame):
153
+ faces = self.__get_faces(frame,max_num=1)
154
  if len(faces) != 0:
155
  frame = self.face_swapper.get(frame, faces[0], self.replacement_faces[0][1], paste_back=True)
156
  return frame
157
 
158
+ def process_faces(self,frame):
159
+ faces = self.__get_faces(frame,max_num=0)
160
  for rep_face in self.replacement_faces:
161
  for i in range(len(faces) - 1, -1, -1):
162
  sim = self.rec_app.compute_sim(rep_face[0], faces[i].embedding)
163
+ if sim>=rep_face[2]:
164
  frame = self.face_swapper.get(frame, faces[i], rep_face[1], paste_back=True)
165
  del faces[i]
166
  break
167
  return frame
168
 
169
+ def __check_video_has_audio(self,video_path):
170
  self.video_has_audio = False
171
  probe = ffmpeg.probe(video_path)
172
  audio_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'audio'), None)
173
  if audio_stream is not None:
174
  self.video_has_audio = True
175
+
176
+ def reface_group(self, faces, frames, output):
177
+ with ThreadPoolExecutor(max_workers = self.use_num_cpus) as executor:
 
178
  if self.first_face:
179
+ results = list(tqdm(executor.map(self.process_first_face, frames), total=len(frames),desc="Processing frames"))
180
  else:
181
+ results = list(tqdm(executor.map(self.process_faces, frames), total=len(frames),desc="Processing frames"))
182
+ for result in results:
183
+ output.write(result)
184
 
185
  def reface(self, video_path, faces):
186
  self.__check_video_has_audio(video_path)
187
+ output_video_path = os.path.join('out',Path(video_path).name)
188
  self.prepare_faces(faces)
189
 
190
  cap = cv2.VideoCapture(video_path)
191
  total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
192
  print(f"Total frames: {total_frames}")
193
+
194
  fps = cap.get(cv2.CAP_PROP_FPS)
195
  frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
196
  frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
197
 
198
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
199
+ output = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
200
+
201
+ frames=[]
202
+ self.k = 1
203
+ with tqdm(total=total_frames,desc="Extracting frames") as pbar:
204
  while cap.isOpened():
205
  flag, frame = cap.read()
206
+ if flag and len(frame)>0:
207
  frames.append(frame.copy())
208
  pbar.update()
209
  else:
210
  break
211
+ if (len(frames) > 1000):
212
+ self.reface_group(faces,frames,output)
213
+ frames=[]
214
 
215
  cap.release()
216
  pbar.close()
217
 
218
+ self.reface_group(faces,frames,output)
219
+ frames=[]
220
+ output.release()
221
+
222
+ return self.__convert_video(video_path,output_video_path)
223
+
224
+ def __try_ffmpeg_encoder(self, vcodec):
225
+ print(f"Trying FFMPEG {vcodec} encoder")
226
+ command = ['ffmpeg', '-y', '-f','lavfi','-i','testsrc=duration=1:size=1280x720:rate=30','-vcodec',vcodec,'testsrc.mp4']
227
+ try:
228
+ subprocess.run(command, check=True, capture_output=True).stderr
229
+ except subprocess.CalledProcessError as e:
230
+ print(f"FFMPEG {vcodec} encoder doesn't work -> Disabled.")
231
+ return False
232
+ print(f"FFMPEG {vcodec} encoder works")
233
+ return True
234
+
235
+ def __check_encoders(self):
236
+ self.ffmpeg_video_encoder='libx264'
237
+ self.ffmpeg_video_bitrate='0'
238
 
239
+ pattern = r"encoders: ([a-zA-Z0-9_]+(?: [a-zA-Z0-9_]+)*)"
240
+ command = ['ffmpeg', '-codecs', '--list-encoders']
241
+ commandout = subprocess.run(command, check=True, capture_output=True).stdout
242
+ result = commandout.decode('utf-8').split('\n')
243
+ for r in result:
244
+ if "264" in r:
245
+ encoders = re.search(pattern, r).group(1).split(' ')
246
+ for v_c in Refacer.VIDEO_CODECS:
247
+ for v_k in encoders:
248
+ if v_c == v_k:
249
+ if self.__try_ffmpeg_encoder(v_k):
250
+ self.ffmpeg_video_encoder=v_k
251
+ self.ffmpeg_video_bitrate=Refacer.VIDEO_CODECS[v_k]
252
+ print(f"Video codec for FFMPEG: {self.ffmpeg_video_encoder}")
253
+ return
254
 
255
+ VIDEO_CODECS = {
256
+ 'h264_videotoolbox':'0', #osx HW acceleration
257
+ 'h264_nvenc':'0', #NVIDIA HW acceleration
258
+ #'h264_qsv', #Intel HW acceleration
259
+ #'h264_vaapi', #Intel HW acceleration
260
+ #'h264_omx', #HW acceleration
261
+ 'libx264':'0' #No HW acceleration
262
+ }