MenstrualQA / app.py
adi2606's picture
Create app.py
2098428 verified
raw
history blame
1.35 kB
import streamlit as st
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Set up the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("adi2606/MenstrualQA").to(device)
tokenizer = AutoTokenizer.from_pretrained("adi2606/MenstrualQA")
# Function to generate a response from the chatbot
def generate_response(message: str, temperature: float = 0.4, repetition_penalty: float = 1.1) -> str:
inputs = tokenizer(message, return_tensors="pt").to(device)
# Generate the response
output = model.generate(
inputs['input_ids'],
max_length=512,
temperature=temperature,
repetition_penalty=repetition_penalty,
do_sample=True
)
# Decode the generated output
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text
# Streamlit app layout
st.title("Menstrual QA Chatbot")
st.write("Ask any question related to menstrual health.")
# User input
user_input = st.text_input("You:", "")
if st.button("Send"):
if user_input:
with st.spinner("Generating response..."):
response = generate_response(user_input)
st.write(f"Chatbot: {response}")
else:
st.write("Please enter a question.")