Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import base64
|
4 |
+
from PIL import Image
|
5 |
+
from io import BytesIO
|
6 |
+
|
7 |
+
# Function to encode an image into base64 format
|
8 |
+
def encode_image(img):
|
9 |
+
buffered = BytesIO()
|
10 |
+
img.save(buffered, format="PNG")
|
11 |
+
encoded_string = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
12 |
+
return encoded_string
|
13 |
+
|
14 |
+
# Function to get explanation from VLM API
|
15 |
+
def explain_image_with_vlm(image):
|
16 |
+
api = "https://api.hyperbolic.xyz/v1/chat/completions"
|
17 |
+
api_key = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiJhZGlsYXppejIwMTNAZ21haWwuY29tIiwiaWF0IjoxNzMyODU1NDI1fQ.lRjbz9LMW9jj7Lf7I8m_dTRh4KQ1wDCdWiTRGErMuEk"
|
18 |
+
|
19 |
+
headers = {
|
20 |
+
"Content-Type": "application/json",
|
21 |
+
"Authorization": f"Bearer {api_key}",
|
22 |
+
}
|
23 |
+
|
24 |
+
base64_img = encode_image(image)
|
25 |
+
|
26 |
+
payload = {
|
27 |
+
"messages": [
|
28 |
+
{
|
29 |
+
"role": "user",
|
30 |
+
"content": [
|
31 |
+
{"type": "text", "text": "Explain the Image in 10 words only"},
|
32 |
+
{
|
33 |
+
"type": "image_url",
|
34 |
+
"image_url": {"url": f"data:image/jpeg;base64,{base64_img}"},
|
35 |
+
},
|
36 |
+
],
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"model": "Qwen/Qwen2-VL-72B-Instruct",
|
40 |
+
"max_tokens": 2048,
|
41 |
+
"temperature": 0.7,
|
42 |
+
"top_p": 0.9,
|
43 |
+
}
|
44 |
+
|
45 |
+
response = requests.post(api, headers=headers, json=payload)
|
46 |
+
if response.status_code == 200:
|
47 |
+
return response.json().get("choices", [{}])[0].get("message", {}).get("content", "No explanation found.")
|
48 |
+
else:
|
49 |
+
return f"Error: {response.status_code} - {response.text}"
|
50 |
+
|
51 |
+
# Streamlit UI
|
52 |
+
st.title("📸 AI-Powered Image Explainer")
|
53 |
+
st.subheader("Capture an image and let the AI explain it!")
|
54 |
+
|
55 |
+
# Camera input
|
56 |
+
img_file_buffer = st.camera_input("Take a picture")
|
57 |
+
|
58 |
+
if img_file_buffer:
|
59 |
+
# Display captured image
|
60 |
+
image = Image.open(img_file_buffer)
|
61 |
+
st.image(image, caption="Captured Image", use_column_width=True)
|
62 |
+
|
63 |
+
st.subheader("🔍 Image Explanation")
|
64 |
+
with st.spinner("Analyzing image..."):
|
65 |
+
explanation = explain_image_with_vlm(image)
|
66 |
+
st.success("Analysis Complete!")
|
67 |
+
st.write(f"**Explanation:** {explanation}")
|
68 |
+
|
69 |
+
st.info(
|
70 |
+
"This app captures an image using your device's camera and provides an AI-generated explanation "
|
71 |
+
"using a cutting-edge Vision Language Model (VLM)."
|
72 |
+
)
|