Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,567 Bytes
fd19ca2 57433a6 fd19ca2 57433a6 c03cca7 698196d c03cca7 698196d c03cca7 57433a6 593a1aa 674be41 593a1aa 99b1651 1ddcb12 fd19ca2 99b1651 504eebe fd19ca2 504eebe fd19ca2 57433a6 1ddcb12 bbed053 1ddcb12 bbed053 1ddcb12 bbed053 1ddcb12 bbed053 49f4b5a f9810c6 49f4b5a 1ddcb12 57433a6 8f231af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import os
import os.path as osp
import gradio as gr
import spaces
import torch
from threading import Thread
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer
HEADER = ("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
</a>
<div>
<h1>VideoGPT: Frontier Multimodal Foundation Models for Video Understanding</h1>
<h5 style="margin: 0;"></h5>
</div>
</div>
""")
device = "cuda"
model = AutoModelForCausalLM.from_pretrained(
"DAMO-NLP-SG/VideoLLaMA3-7B",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
)
model.to(device)
processor = AutoProcessor.from_pretrained("DAMO-NLP-SG/VideoLLaMA3-7B", trust_remote_code=True)
example_dir = "./examples"
image_formats = ("png", "jpg", "jpeg")
video_formats = ("mp4",)
image_examples, video_examples = [], []
if example_dir is not None:
example_files = [
osp.join(example_dir, f) for f in os.listdir(example_dir)
]
for example_file in example_files:
if example_file.endswith(image_formats):
image_examples.append([example_file])
elif example_file.endswith(video_formats):
video_examples.append([example_file])
def _on_video_upload(messages, video):
if video is not None:
# messages.append({"role": "user", "content": gr.Video(video)})
messages.append({"role": "user", "content": {"path": video}})
return messages, None
def _on_image_upload(messages, image):
if image is not None:
# messages.append({"role": "user", "content": gr.Image(image)})
messages.append({"role": "user", "content": {"path": image}})
return messages, None
def _on_text_submit(messages, text):
messages.append({"role": "user", "content": text})
return messages, ""
@spaces.GPU(duration=120)
def _predict(messages, input_text, do_sample, temperature, top_p, max_new_tokens,
fps, max_frames):
if len(input_text) > 0:
messages.append({"role": "user", "content": input_text})
new_messages = []
contents = []
for message in messages:
if message["role"] == "assistant":
if len(contents):
new_messages.append({"role": "user", "content": contents})
contents = []
new_messages.append(message)
elif message["role"] == "user":
if isinstance(message["content"], str):
contents.append(message["content"])
else:
media_path = message["content"][0]
if media_path.endswith(video_formats):
contents.append({"type": "video", "video": {"video_path": media_path, "fps": fps, "max_frames": max_frames}})
elif media_path.endswith(image_formats):
contents.append({"type": "image", "image": {"image_path": media_path}})
else:
raise ValueError(f"Unsupported media type: {media_path}")
if len(contents):
new_messages.append({"role": "user", "content": contents})
if len(new_messages) == 0 or new_messages[-1]["role"] != "user":
return messages
generation_config = {
"do_sample": do_sample,
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_tokens
}
inputs = processor(
conversation=new_messages,
add_system_prompt=True,
add_generation_prompt=True,
return_tensors="pt"
)
inputs = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
if "pixel_values" in inputs:
inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
**generation_config,
"streamer": streamer,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
messages.append({"role": "assistant", "content": ""})
for token in streamer:
messages[-1]['content'] += token
yield messages
with gr.Blocks() as interface:
gr.HTML(HEADER)
with gr.Row():
chatbot = gr.Chatbot(type="messages", elem_id="chatbot", height=835)
with gr.Column():
with gr.Tab(label="Input"):
with gr.Row():
input_video = gr.Video(sources=["upload"], label="Upload Video")
input_image = gr.Image(sources=["upload"], type="filepath", label="Upload Image")
input_text = gr.Textbox(label="Input Text", placeholder="Type your message here and press enter to submit")
submit_button = gr.Button("Generate")
gr.Examples(examples=[
[f"examples/bear.mp4", "What is unusual in the video?"],
[f"examples/dog.mp4", "Please describe the video in detail."],
[f"examples/exercise.mp4", "What is the man doing in the video?"],
], inputs=[input_video, input_text], label="Video examples")
with gr.Tab(label="Configure"):
with gr.Accordion("Generation Config", open=True):
do_sample = gr.Checkbox(value=True, label="Do Sample")
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Temperature")
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
max_new_tokens = gr.Slider(minimum=0, maximum=4096, value=2048, step=1, label="Max New Tokens")
with gr.Accordion("Video Config", open=True):
fps = gr.Slider(minimum=0.0, maximum=10.0, value=1, label="FPS")
max_frames = gr.Slider(minimum=0, maximum=256, value=180, step=1, label="Max Frames")
input_video.change(_on_video_upload, [chatbot, input_video], [chatbot, input_video])
input_image.change(_on_image_upload, [chatbot, input_image], [chatbot, input_image])
input_text.submit(_on_text_submit, [chatbot, input_text], [chatbot, input_text])
submit_button.click(
_predict,
[
chatbot, input_text, do_sample, temperature, top_p, max_new_tokens,
fps, max_frames
],
[chatbot],
)
if __name__ == "__main__":
interface.launch()
|