adilkh26 commited on
Commit
ad6e902
·
verified ·
1 Parent(s): 5850aaa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -164
app.py CHANGED
@@ -1,176 +1,51 @@
1
- import os
2
- import os.path as osp
3
-
4
  import gradio as gr
5
- import spaces
6
  import torch
7
- from threading import Thread
8
- from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer
9
-
10
-
11
- HEADER = ("""
12
- <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
13
- <a href="" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
14
- </a>
15
- <div>
16
- <h1>VideoGPT: Frontier Multimodal Foundation Models for Video Understanding</h1>
17
- <h5 style="margin: 0;"></h5>
18
- </div>
19
- </div>
20
- """)
21
-
22
- device = "cuda"
23
- model = AutoModelForCausalLM.from_pretrained(
24
- "OpenGVLab/InternVideo2_5_Chat_8B",
25
- trust_remote_code=True,
26
- torch_dtype=torch.bfloat16,
27
- attn_implementation="flash_attention_2",
28
- )
29
- model.to(device)
30
- processor = AutoProcessor.from_pretrained("DAMO-NLP-SG/VideoLLaMA3-7B", trust_remote_code=True)
31
-
32
-
33
- example_dir = "./examples"
34
- image_formats = ("png", "jpg", "jpeg")
35
- video_formats = ("mp4",)
36
-
37
- image_examples, video_examples = [], []
38
- if example_dir is not None:
39
- example_files = [
40
- osp.join(example_dir, f) for f in os.listdir(example_dir)
41
- ]
42
- for example_file in example_files:
43
- if example_file.endswith(image_formats):
44
- image_examples.append([example_file])
45
- elif example_file.endswith(video_formats):
46
- video_examples.append([example_file])
47
-
48
-
49
- def _on_video_upload(messages, video):
50
- if video is not None:
51
- # messages.append({"role": "user", "content": gr.Video(video)})
52
- messages.append({"role": "user", "content": {"path": video}})
53
- return messages, None
54
-
55
- def _on_image_upload(messages, image):
56
- if image is not None:
57
- # messages.append({"role": "user", "content": gr.Image(image)})
58
- messages.append({"role": "user", "content": {"path": image}})
59
- return messages, None
60
-
61
- def _on_text_submit(messages, text):
62
- messages.append({"role": "user", "content": text})
63
- return messages, ""
64
-
65
- @spaces.GPU(duration=120)
66
- def _predict(messages, input_text, do_sample, temperature, top_p, max_new_tokens,
67
- fps, max_frames):
68
- if len(input_text) > 0:
69
- messages.append({"role": "user", "content": input_text})
70
- new_messages = []
71
- contents = []
72
- for message in messages:
73
- if message["role"] == "assistant":
74
- if len(contents):
75
- new_messages.append({"role": "user", "content": contents})
76
- contents = []
77
- new_messages.append(message)
78
- elif message["role"] == "user":
79
- if isinstance(message["content"], str):
80
- contents.append(message["content"])
81
- else:
82
- media_path = message["content"][0]
83
- if media_path.endswith(video_formats):
84
- contents.append({"type": "video", "video": {"video_path": media_path, "fps": fps, "max_frames": max_frames}})
85
- elif media_path.endswith(image_formats):
86
- contents.append({"type": "image", "image": {"image_path": media_path}})
87
- else:
88
- raise ValueError(f"Unsupported media type: {media_path}")
89
 
90
- if len(contents):
91
- new_messages.append({"role": "user", "content": contents})
92
 
93
- if len(new_messages) == 0 or new_messages[-1]["role"] != "user":
94
- return messages
95
-
96
- generation_config = {
97
- "do_sample": do_sample,
98
- "temperature": temperature,
99
- "top_p": top_p,
100
- "max_new_tokens": max_new_tokens
101
- }
102
-
103
- inputs = processor(
104
- conversation=new_messages,
105
- add_system_prompt=True,
106
- add_generation_prompt=True,
107
- return_tensors="pt"
108
- )
109
- inputs = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
110
- if "pixel_values" in inputs:
111
- inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
112
-
113
- streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
114
- generation_kwargs = {
115
- **inputs,
116
- **generation_config,
117
- "streamer": streamer,
118
- }
119
-
120
- thread = Thread(target=model.generate, kwargs=generation_kwargs)
121
- thread.start()
122
-
123
- messages.append({"role": "assistant", "content": ""})
124
- for token in streamer:
125
- messages[-1]['content'] += token
126
- yield messages
127
-
128
-
129
- with gr.Blocks() as interface:
130
- gr.HTML(HEADER)
131
- with gr.Row():
132
- chatbot = gr.Chatbot(type="messages", elem_id="chatbot", height=835)
133
-
134
- with gr.Column():
135
- with gr.Tab(label="Input"):
136
-
137
- with gr.Row():
138
- input_video = gr.Video(sources=["upload"], label="Upload Video")
139
- input_image = gr.Image(sources=["upload"], type="filepath", label="Upload Image")
140
-
141
- input_text = gr.Textbox(label="Input Text", placeholder="Type your message here and press enter to submit")
142
 
143
- submit_button = gr.Button("Generate")
 
144
 
145
- gr.Examples(examples=[
146
- [f"examples/bear.mp4", "What is unusual in the video?"],
147
- [f"examples/dog.mp4", "Please describe the video in detail."],
148
- [f"examples/exercise.mp4", "What is the man doing in the video?"],
149
- ], inputs=[input_video, input_text], label="Video examples")
150
 
151
- with gr.Tab(label="Configure"):
152
- with gr.Accordion("Generation Config", open=True):
153
- do_sample = gr.Checkbox(value=True, label="Do Sample")
154
- temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Temperature")
155
- top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
156
- max_new_tokens = gr.Slider(minimum=0, maximum=4096, value=2048, step=1, label="Max New Tokens")
157
 
158
- with gr.Accordion("Video Config", open=True):
159
- fps = gr.Slider(minimum=0.0, maximum=10.0, value=1, label="FPS")
160
- max_frames = gr.Slider(minimum=0, maximum=256, value=180, step=1, label="Max Frames")
 
 
 
 
161
 
162
- input_video.change(_on_video_upload, [chatbot, input_video], [chatbot, input_video])
163
- input_image.change(_on_image_upload, [chatbot, input_image], [chatbot, input_image])
164
- input_text.submit(_on_text_submit, [chatbot, input_text], [chatbot, input_text])
165
- submit_button.click(
166
- _predict,
167
- [
168
- chatbot, input_text, do_sample, temperature, top_p, max_new_tokens,
169
- fps, max_frames
170
- ],
171
- [chatbot],
172
- )
173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
 
 
175
  if __name__ == "__main__":
176
- interface.launch()
 
 
 
 
1
  import gradio as gr
 
2
  import torch
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
+ from huggingface_hub import hf_hub_download
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ # Model name
7
+ model_name = "OpenGVLab/InternVideo2_5_Chat_8B"
8
 
9
+ # Set Hugging Face cache directory
10
+ import os
11
+ os.environ["HF_HOME"] = "/home/user/.cache/huggingface" # Change if needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ # Increase timeout for downloads
14
+ os.environ["HF_HUB_DOWNLOAD_TIMEOUT"] = "300" # 5 minutes
15
 
16
+ # Load tokenizer
17
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
 
 
 
18
 
19
+ # Detect device
20
+ device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
21
 
22
+ # Load model
23
+ model = AutoModelForCausalLM.from_pretrained(
24
+ model_name,
25
+ trust_remote_code=True,
26
+ torch_dtype=torch.float16 if device == "cuda" else torch.float32,
27
+ device_map="auto" if device == "cuda" else None
28
+ )
29
 
30
+ # Move model to device
31
+ model.to(device)
 
 
 
 
 
 
 
 
 
32
 
33
+ # Define inference function
34
+ def chat_with_model(prompt):
35
+ inputs = tokenizer(prompt, return_tensors="pt").to(device)
36
+ output = model.generate(**inputs, max_length=200)
37
+ return tokenizer.decode(output[0], skip_special_tokens=True)
38
+
39
+ # Create Gradio UI
40
+ demo = gr.Interface(
41
+ fn=chat_with_model,
42
+ inputs=gr.Textbox(placeholder="Type your prompt here..."),
43
+ outputs="text",
44
+ title="InternVideo2.5 Chatbot",
45
+ description="A chatbot powered by InternVideo2_5_Chat_8B.",
46
+ theme="compact"
47
+ )
48
 
49
+ # Run the Gradio app
50
  if __name__ == "__main__":
51
+ demo.launch()