adilkh26 commited on
Commit
bb7b6ef
·
verified ·
1 Parent(s): a6086dd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +164 -33
app.py CHANGED
@@ -1,45 +1,176 @@
 
 
 
1
  import gradio as gr
 
2
  import torch
3
- from transformers import AutoModelForCausalLM, AutoTokenizer
4
-
5
- # Model name
6
- model_name = "OpenGVLab/InternVideo2_5_Chat_8B"
7
-
8
-
9
 
10
- # Load tokenizer
11
- tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
12
 
13
- # Detect device
14
- device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
 
 
 
 
15
 
16
- # Load model
17
  model = AutoModelForCausalLM.from_pretrained(
18
- model_name,
19
  trust_remote_code=True,
20
- torch_dtype=torch.float16 if device == "cuda" else torch.float32, # Use float16 on GPU, float32 on CPU
21
- device_map="auto" if device == "cuda" else None # Use GPU if available
22
  )
23
-
24
- # Move model to device
25
  model.to(device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
- # Define inference function
28
- def chat_with_model(prompt):
29
- inputs = tokenizer(prompt, return_tensors="pt").to(device)
30
- output = model.generate(**inputs, max_length=200)
31
- return tokenizer.decode(output[0], skip_special_tokens=True)
32
-
33
- # Create Gradio UI
34
- demo = gr.Interface(
35
- fn=chat_with_model,
36
- inputs=gr.Textbox(placeholder="Type your prompt here..."),
37
- outputs="text",
38
- title="InternVideo2.5 Chatbot",
39
- description="A chatbot powered by InternVideo2_5_Chat_8B.",
40
- theme="compact"
41
- )
42
 
43
- # Run the Gradio app
44
  if __name__ == "__main__":
45
- demo.launch()
 
1
+ import os
2
+ import os.path as osp
3
+
4
  import gradio as gr
5
+ import spaces
6
  import torch
7
+ from threading import Thread
8
+ from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer
 
 
 
 
9
 
 
 
10
 
11
+ HEADER = ("""
12
+ <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
13
+ <a href="" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
14
+ </a>
15
+ <div>
16
+ <h1>VideoGPT: Frontier Multimodal Foundation Models for Video Understanding</h1>
17
+ <h5 style="margin: 0;"></h5>
18
+ </div>
19
+ </div>
20
+ """)
21
 
22
+ device = "cuda"
23
  model = AutoModelForCausalLM.from_pretrained(
24
+ "DAMO-NLP-SG/VideoLLaMA3-7B",
25
  trust_remote_code=True,
26
+ torch_dtype=torch.bfloat16,
27
+ attn_implementation="flash_attention_2",
28
  )
 
 
29
  model.to(device)
30
+ processor = AutoProcessor.from_pretrained("DAMO-NLP-SG/VideoLLaMA3-7B", trust_remote_code=True)
31
+
32
+
33
+ example_dir = "./examples"
34
+ image_formats = ("png", "jpg", "jpeg")
35
+ video_formats = ("mp4",)
36
+
37
+ image_examples, video_examples = [], []
38
+ if example_dir is not None:
39
+ example_files = [
40
+ osp.join(example_dir, f) for f in os.listdir(example_dir)
41
+ ]
42
+ for example_file in example_files:
43
+ if example_file.endswith(image_formats):
44
+ image_examples.append([example_file])
45
+ elif example_file.endswith(video_formats):
46
+ video_examples.append([example_file])
47
+
48
+
49
+ def _on_video_upload(messages, video):
50
+ if video is not None:
51
+ # messages.append({"role": "user", "content": gr.Video(video)})
52
+ messages.append({"role": "user", "content": {"path": video}})
53
+ return messages, None
54
+
55
+ def _on_image_upload(messages, image):
56
+ if image is not None:
57
+ # messages.append({"role": "user", "content": gr.Image(image)})
58
+ messages.append({"role": "user", "content": {"path": image}})
59
+ return messages, None
60
+
61
+ def _on_text_submit(messages, text):
62
+ messages.append({"role": "user", "content": text})
63
+ return messages, ""
64
+
65
+ @spaces.GPU(duration=120)
66
+ def _predict(messages, input_text, do_sample, temperature, top_p, max_new_tokens,
67
+ fps, max_frames):
68
+ if len(input_text) > 0:
69
+ messages.append({"role": "user", "content": input_text})
70
+ new_messages = []
71
+ contents = []
72
+ for message in messages:
73
+ if message["role"] == "assistant":
74
+ if len(contents):
75
+ new_messages.append({"role": "user", "content": contents})
76
+ contents = []
77
+ new_messages.append(message)
78
+ elif message["role"] == "user":
79
+ if isinstance(message["content"], str):
80
+ contents.append(message["content"])
81
+ else:
82
+ media_path = message["content"][0]
83
+ if media_path.endswith(video_formats):
84
+ contents.append({"type": "video", "video": {"video_path": media_path, "fps": fps, "max_frames": max_frames}})
85
+ elif media_path.endswith(image_formats):
86
+ contents.append({"type": "image", "image": {"image_path": media_path}})
87
+ else:
88
+ raise ValueError(f"Unsupported media type: {media_path}")
89
+
90
+ if len(contents):
91
+ new_messages.append({"role": "user", "content": contents})
92
+
93
+ if len(new_messages) == 0 or new_messages[-1]["role"] != "user":
94
+ return messages
95
+
96
+ generation_config = {
97
+ "do_sample": do_sample,
98
+ "temperature": temperature,
99
+ "top_p": top_p,
100
+ "max_new_tokens": max_new_tokens
101
+ }
102
+
103
+ inputs = processor(
104
+ conversation=new_messages,
105
+ add_system_prompt=True,
106
+ add_generation_prompt=True,
107
+ return_tensors="pt"
108
+ )
109
+ inputs = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
110
+ if "pixel_values" in inputs:
111
+ inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
112
+
113
+ streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
114
+ generation_kwargs = {
115
+ **inputs,
116
+ **generation_config,
117
+ "streamer": streamer,
118
+ }
119
+
120
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
121
+ thread.start()
122
+
123
+ messages.append({"role": "assistant", "content": ""})
124
+ for token in streamer:
125
+ messages[-1]['content'] += token
126
+ yield messages
127
+
128
+
129
+ with gr.Blocks() as interface:
130
+ gr.HTML(HEADER)
131
+ with gr.Row():
132
+ chatbot = gr.Chatbot(type="messages", elem_id="chatbot", height=835)
133
+
134
+ with gr.Column():
135
+ with gr.Tab(label="Input"):
136
+
137
+ with gr.Row():
138
+ input_video = gr.Video(sources=["upload"], label="Upload Video")
139
+ input_image = gr.Image(sources=["upload"], type="filepath", label="Upload Image")
140
+
141
+ input_text = gr.Textbox(label="Input Text", placeholder="Type your message here and press enter to submit")
142
+
143
+ submit_button = gr.Button("Generate")
144
+
145
+ gr.Examples(examples=[
146
+ [f"examples/bear.mp4", "What is unusual in the video?"],
147
+ [f"examples/dog.mp4", "Please describe the video in detail."],
148
+ [f"examples/exercise.mp4", "What is the man doing in the video?"],
149
+ ], inputs=[input_video, input_text], label="Video examples")
150
+
151
+ with gr.Tab(label="Configure"):
152
+ with gr.Accordion("Generation Config", open=True):
153
+ do_sample = gr.Checkbox(value=True, label="Do Sample")
154
+ temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Temperature")
155
+ top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
156
+ max_new_tokens = gr.Slider(minimum=0, maximum=4096, value=2048, step=1, label="Max New Tokens")
157
+
158
+ with gr.Accordion("Video Config", open=True):
159
+ fps = gr.Slider(minimum=0.0, maximum=10.0, value=1, label="FPS")
160
+ max_frames = gr.Slider(minimum=0, maximum=256, value=180, step=1, label="Max Frames")
161
+
162
+ input_video.change(_on_video_upload, [chatbot, input_video], [chatbot, input_video])
163
+ input_image.change(_on_image_upload, [chatbot, input_image], [chatbot, input_image])
164
+ input_text.submit(_on_text_submit, [chatbot, input_text], [chatbot, input_text])
165
+ submit_button.click(
166
+ _predict,
167
+ [
168
+ chatbot, input_text, do_sample, temperature, top_p, max_new_tokens,
169
+ fps, max_frames
170
+ ],
171
+ [chatbot],
172
+ )
173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
 
 
175
  if __name__ == "__main__":
176
+ interface.launch()