File size: 12,442 Bytes
153628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.


from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Tuple

from torch import nn
from torchvision.models.resnet import BasicBlock
from torchvision.models.resnet import ResNet as TVResNet
from torchvision.models.resnet import resnet18 as tv_resnet18
from torchvision.models.resnet import resnet34 as tv_resnet34
from torchvision.models.resnet import resnet50 as tv_resnet50

from doctr.datasets import VOCABS

from ...utils import conv_sequence_pt, load_pretrained_params

__all__ = ["ResNet", "resnet18", "resnet31", "resnet34", "resnet50", "resnet34_wide", "resnet_stage"]


default_cfgs: Dict[str, Dict[str, Any]] = {
    "resnet18": {
        "mean": (0.694, 0.695, 0.693),
        "std": (0.299, 0.296, 0.301),
        "input_shape": (3, 32, 32),
        "classes": list(VOCABS["french"]),
        "url": "https://doctr-static.mindee.com/models?id=v0.4.1/resnet18-244bf390.pt&src=0",
    },
    "resnet31": {
        "mean": (0.694, 0.695, 0.693),
        "std": (0.299, 0.296, 0.301),
        "input_shape": (3, 32, 32),
        "classes": list(VOCABS["french"]),
        "url": "https://doctr-static.mindee.com/models?id=v0.4.1/resnet31-1056cc5c.pt&src=0",
    },
    "resnet34": {
        "mean": (0.694, 0.695, 0.693),
        "std": (0.299, 0.296, 0.301),
        "input_shape": (3, 32, 32),
        "classes": list(VOCABS["french"]),
        "url": "https://doctr-static.mindee.com/models?id=v0.5.0/resnet34-bd8725db.pt&src=0",
    },
    "resnet50": {
        "mean": (0.694, 0.695, 0.693),
        "std": (0.299, 0.296, 0.301),
        "input_shape": (3, 32, 32),
        "classes": list(VOCABS["french"]),
        "url": "https://doctr-static.mindee.com/models?id=v0.5.0/resnet50-1a6c155e.pt&src=0",
    },
    "resnet34_wide": {
        "mean": (0.694, 0.695, 0.693),
        "std": (0.299, 0.296, 0.301),
        "input_shape": (3, 32, 32),
        "classes": list(VOCABS["french"]),
        "url": "https://doctr-static.mindee.com/models?id=v0.6.0/resnet34_wide-b4b3e39e.pt&src=0",
    },
}


def resnet_stage(in_channels: int, out_channels: int, num_blocks: int, stride: int) -> List[nn.Module]:
    """Build a ResNet stage"""
    _layers: List[nn.Module] = []

    in_chan = in_channels
    s = stride
    for _ in range(num_blocks):
        downsample = None
        if in_chan != out_channels:
            downsample = nn.Sequential(*conv_sequence_pt(in_chan, out_channels, False, True, kernel_size=1, stride=s))

        _layers.append(BasicBlock(in_chan, out_channels, stride=s, downsample=downsample))
        in_chan = out_channels
        # Only the first block can have stride != 1
        s = 1

    return _layers


class ResNet(nn.Sequential):
    """Implements a ResNet-31 architecture from `"Show, Attend and Read:A Simple and Strong Baseline for Irregular
    Text Recognition" <https://arxiv.org/pdf/1811.00751.pdf>`_.

    Args:
    ----
        num_blocks: number of resnet block in each stage
        output_channels: number of channels in each stage
        stage_conv: whether to add a conv_sequence after each stage
        stage_pooling: pooling to add after each stage (if None, no pooling)
        origin_stem: whether to use the orginal ResNet stem or ResNet-31's
        stem_channels: number of output channels of the stem convolutions
        attn_module: attention module to use in each stage
        include_top: whether the classifier head should be instantiated
        num_classes: number of output classes
    """

    def __init__(
        self,
        num_blocks: List[int],
        output_channels: List[int],
        stage_stride: List[int],
        stage_conv: List[bool],
        stage_pooling: List[Optional[Tuple[int, int]]],
        origin_stem: bool = True,
        stem_channels: int = 64,
        attn_module: Optional[Callable[[int], nn.Module]] = None,
        include_top: bool = True,
        num_classes: int = 1000,
        cfg: Optional[Dict[str, Any]] = None,
    ) -> None:
        _layers: List[nn.Module]
        if origin_stem:
            _layers = [
                *conv_sequence_pt(3, stem_channels, True, True, kernel_size=7, padding=3, stride=2),
                nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
            ]
        else:
            _layers = [
                *conv_sequence_pt(3, stem_channels // 2, True, True, kernel_size=3, padding=1),
                *conv_sequence_pt(stem_channels // 2, stem_channels, True, True, kernel_size=3, padding=1),
                nn.MaxPool2d(2),
            ]
        in_chans = [stem_channels] + output_channels[:-1]
        for n_blocks, in_chan, out_chan, stride, conv, pool in zip(
            num_blocks, in_chans, output_channels, stage_stride, stage_conv, stage_pooling
        ):
            _stage = resnet_stage(in_chan, out_chan, n_blocks, stride)
            if attn_module is not None:
                _stage.append(attn_module(out_chan))
            if conv:
                _stage.extend(conv_sequence_pt(out_chan, out_chan, True, True, kernel_size=3, padding=1))
            if pool is not None:
                _stage.append(nn.MaxPool2d(pool))
            _layers.append(nn.Sequential(*_stage))

        if include_top:
            _layers.extend([
                nn.AdaptiveAvgPool2d(1),
                nn.Flatten(1),
                nn.Linear(output_channels[-1], num_classes, bias=True),
            ])

        super().__init__(*_layers)
        self.cfg = cfg

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)


def _resnet(
    arch: str,
    pretrained: bool,
    num_blocks: List[int],
    output_channels: List[int],
    stage_stride: List[int],
    stage_conv: List[bool],
    stage_pooling: List[Optional[Tuple[int, int]]],
    ignore_keys: Optional[List[str]] = None,
    **kwargs: Any,
) -> ResNet:
    kwargs["num_classes"] = kwargs.get("num_classes", len(default_cfgs[arch]["classes"]))
    kwargs["classes"] = kwargs.get("classes", default_cfgs[arch]["classes"])

    _cfg = deepcopy(default_cfgs[arch])
    _cfg["num_classes"] = kwargs["num_classes"]
    _cfg["classes"] = kwargs["classes"]
    kwargs.pop("classes")

    # Build the model
    model = ResNet(num_blocks, output_channels, stage_stride, stage_conv, stage_pooling, cfg=_cfg, **kwargs)
    # Load pretrained parameters
    if pretrained:
        # The number of classes is not the same as the number of classes in the pretrained model =>
        # remove the last layer weights
        _ignore_keys = ignore_keys if kwargs["num_classes"] != len(default_cfgs[arch]["classes"]) else None
        load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys)

    return model


def _tv_resnet(
    arch: str,
    pretrained: bool,
    arch_fn,
    ignore_keys: Optional[List[str]] = None,
    **kwargs: Any,
) -> TVResNet:
    kwargs["num_classes"] = kwargs.get("num_classes", len(default_cfgs[arch]["classes"]))
    kwargs["classes"] = kwargs.get("classes", default_cfgs[arch]["classes"])

    _cfg = deepcopy(default_cfgs[arch])
    _cfg["num_classes"] = kwargs["num_classes"]
    _cfg["classes"] = kwargs["classes"]
    kwargs.pop("classes")

    # Build the model
    model = arch_fn(**kwargs, weights=None)
    # Load pretrained parameters
    if pretrained:
        # The number of classes is not the same as the number of classes in the pretrained model =>
        # remove the last layer weights
        _ignore_keys = ignore_keys if kwargs["num_classes"] != len(default_cfgs[arch]["classes"]) else None
        load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys)

    model.cfg = _cfg

    return model


def resnet18(pretrained: bool = False, **kwargs: Any) -> TVResNet:
    """ResNet-18 architecture as described in `"Deep Residual Learning for Image Recognition",
    <https://arxiv.org/pdf/1512.03385.pdf>`_.

    >>> import torch
    >>> from doctr.models import resnet18
    >>> model = resnet18(pretrained=False)
    >>> input_tensor = torch.rand((1, 3, 512, 512), dtype=torch.float32)
    >>> out = model(input_tensor)

    Args:
    ----
        pretrained: boolean, True if model is pretrained
        **kwargs: keyword arguments of the ResNet architecture

    Returns:
    -------
        A resnet18 model
    """
    return _tv_resnet(
        "resnet18",
        pretrained,
        tv_resnet18,
        ignore_keys=["fc.weight", "fc.bias"],
        **kwargs,
    )


def resnet31(pretrained: bool = False, **kwargs: Any) -> ResNet:
    """Resnet31 architecture with rectangular pooling windows as described in
    `"Show, Attend and Read:A Simple and Strong Baseline for Irregular Text Recognition",
    <https://arxiv.org/pdf/1811.00751.pdf>`_. Downsizing: (H, W) --> (H/8, W/4)

    >>> import torch
    >>> from doctr.models import resnet31
    >>> model = resnet31(pretrained=False)
    >>> input_tensor = torch.rand((1, 3, 512, 512), dtype=torch.float32)
    >>> out = model(input_tensor)

    Args:
    ----
        pretrained: boolean, True if model is pretrained
        **kwargs: keyword arguments of the ResNet architecture

    Returns:
    -------
        A resnet31 model
    """
    return _resnet(
        "resnet31",
        pretrained,
        [1, 2, 5, 3],
        [256, 256, 512, 512],
        [1, 1, 1, 1],
        [True] * 4,
        [(2, 2), (2, 1), None, None],
        origin_stem=False,
        stem_channels=128,
        ignore_keys=["13.weight", "13.bias"],
        **kwargs,
    )


def resnet34(pretrained: bool = False, **kwargs: Any) -> TVResNet:
    """ResNet-34 architecture as described in `"Deep Residual Learning for Image Recognition",
    <https://arxiv.org/pdf/1512.03385.pdf>`_.

    >>> import torch
    >>> from doctr.models import resnet34
    >>> model = resnet34(pretrained=False)
    >>> input_tensor = torch.rand((1, 3, 512, 512), dtype=torch.float32)
    >>> out = model(input_tensor)

    Args:
    ----
        pretrained: boolean, True if model is pretrained
        **kwargs: keyword arguments of the ResNet architecture

    Returns:
    -------
        A resnet34 model
    """
    return _tv_resnet(
        "resnet34",
        pretrained,
        tv_resnet34,
        ignore_keys=["fc.weight", "fc.bias"],
        **kwargs,
    )


def resnet34_wide(pretrained: bool = False, **kwargs: Any) -> ResNet:
    """ResNet-34 architecture as described in `"Deep Residual Learning for Image Recognition",
    <https://arxiv.org/pdf/1512.03385.pdf>`_ with twice as many output channels.

    >>> import torch
    >>> from doctr.models import resnet34_wide
    >>> model = resnet34_wide(pretrained=False)
    >>> input_tensor = torch.rand((1, 3, 512, 512), dtype=torch.float32)
    >>> out = model(input_tensor)

    Args:
    ----
        pretrained: boolean, True if model is pretrained
        **kwargs: keyword arguments of the ResNet architecture

    Returns:
    -------
        A resnet34_wide model
    """
    return _resnet(
        "resnet34_wide",
        pretrained,
        [3, 4, 6, 3],
        [128, 256, 512, 1024],
        [1, 2, 2, 2],
        [False] * 4,
        [None] * 4,
        origin_stem=True,
        stem_channels=128,
        ignore_keys=["10.weight", "10.bias"],
        **kwargs,
    )


def resnet50(pretrained: bool = False, **kwargs: Any) -> TVResNet:
    """ResNet-50 architecture as described in `"Deep Residual Learning for Image Recognition",
    <https://arxiv.org/pdf/1512.03385.pdf>`_.

    >>> import torch
    >>> from doctr.models import resnet50
    >>> model = resnet50(pretrained=False)
    >>> input_tensor = torch.rand((1, 3, 512, 512), dtype=torch.float32)
    >>> out = model(input_tensor)

    Args:
    ----
        pretrained: boolean, True if model is pretrained
        **kwargs: keyword arguments of the ResNet architecture

    Returns:
    -------
        A resnet50 model
    """
    return _tv_resnet(
        "resnet50",
        pretrained,
        tv_resnet50,
        ignore_keys=["fc.weight", "fc.bias"],
        **kwargs,
    )