Spaces:
Runtime error
Runtime error
File size: 13,810 Bytes
153628e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
from typing import Any, Callable, Dict, List, Optional, Tuple
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.models._utils import IntermediateLayerGetter
from doctr.file_utils import CLASS_NAME
from doctr.models.classification import resnet18, resnet34, resnet50
from ...utils import _bf16_to_float32, load_pretrained_params
from .base import LinkNetPostProcessor, _LinkNet
__all__ = ["LinkNet", "linknet_resnet18", "linknet_resnet34", "linknet_resnet50"]
default_cfgs: Dict[str, Dict[str, Any]] = {
"linknet_resnet18": {
"input_shape": (3, 1024, 1024),
"mean": (0.798, 0.785, 0.772),
"std": (0.264, 0.2749, 0.287),
"url": "https://doctr-static.mindee.com/models?id=v0.7.0/linknet_resnet18-e47a14dc.pt&src=0",
},
"linknet_resnet34": {
"input_shape": (3, 1024, 1024),
"mean": (0.798, 0.785, 0.772),
"std": (0.264, 0.2749, 0.287),
"url": "https://doctr-static.mindee.com/models?id=v0.7.0/linknet_resnet34-9ca2df3e.pt&src=0",
},
"linknet_resnet50": {
"input_shape": (3, 1024, 1024),
"mean": (0.798, 0.785, 0.772),
"std": (0.264, 0.2749, 0.287),
"url": "https://doctr-static.mindee.com/models?id=v0.7.0/linknet_resnet50-6cf565c1.pt&src=0",
},
}
class LinkNetFPN(nn.Module):
def __init__(self, layer_shapes: List[Tuple[int, int, int]]) -> None:
super().__init__()
strides = [
1 if (in_shape[-1] == out_shape[-1]) else 2
for in_shape, out_shape in zip(layer_shapes[:-1], layer_shapes[1:])
]
chans = [shape[0] for shape in layer_shapes]
_decoder_layers = [
self.decoder_block(ochan, ichan, stride) for ichan, ochan, stride in zip(chans[:-1], chans[1:], strides)
]
self.decoders = nn.ModuleList(_decoder_layers)
@staticmethod
def decoder_block(in_chan: int, out_chan: int, stride: int) -> nn.Sequential:
"""Creates a LinkNet decoder block"""
mid_chan = in_chan // 4
return nn.Sequential(
nn.Conv2d(in_chan, mid_chan, kernel_size=1, bias=False),
nn.BatchNorm2d(mid_chan),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(mid_chan, mid_chan, 3, padding=1, output_padding=stride - 1, stride=stride, bias=False),
nn.BatchNorm2d(mid_chan),
nn.ReLU(inplace=True),
nn.Conv2d(mid_chan, out_chan, kernel_size=1, bias=False),
nn.BatchNorm2d(out_chan),
nn.ReLU(inplace=True),
)
def forward(self, feats: List[torch.Tensor]) -> torch.Tensor:
out = feats[-1]
for decoder, fmap in zip(self.decoders[::-1], feats[:-1][::-1]):
out = decoder(out) + fmap
out = self.decoders[0](out)
return out
class LinkNet(nn.Module, _LinkNet):
"""LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation"
<https://arxiv.org/pdf/1707.03718.pdf>`_.
Args:
----
feature extractor: the backbone serving as feature extractor
bin_thresh: threshold for binarization of the output feature map
box_thresh: minimal objectness score to consider a box
head_chans: number of channels in the head layers
assume_straight_pages: if True, fit straight bounding boxes only
exportable: onnx exportable returns only logits
cfg: the configuration dict of the model
class_names: list of class names
"""
def __init__(
self,
feat_extractor: IntermediateLayerGetter,
bin_thresh: float = 0.1,
box_thresh: float = 0.1,
head_chans: int = 32,
assume_straight_pages: bool = True,
exportable: bool = False,
cfg: Optional[Dict[str, Any]] = None,
class_names: List[str] = [CLASS_NAME],
) -> None:
super().__init__()
self.class_names = class_names
num_classes: int = len(self.class_names)
self.cfg = cfg
self.exportable = exportable
self.assume_straight_pages = assume_straight_pages
self.feat_extractor = feat_extractor
# Identify the number of channels for the FPN initialization
self.feat_extractor.eval()
with torch.no_grad():
in_shape = (3, 512, 512)
out = self.feat_extractor(torch.zeros((1, *in_shape)))
# Get the shapes of the extracted feature maps
_shapes = [v.shape[1:] for _, v in out.items()]
# Prepend the expected shapes of the first encoder
_shapes = [(_shapes[0][0], in_shape[1] // 4, in_shape[2] // 4)] + _shapes
self.feat_extractor.train()
self.fpn = LinkNetFPN(_shapes)
self.classifier = nn.Sequential(
nn.ConvTranspose2d(
_shapes[0][0], head_chans, kernel_size=3, padding=1, output_padding=1, stride=2, bias=False
),
nn.BatchNorm2d(head_chans),
nn.ReLU(inplace=True),
nn.Conv2d(head_chans, head_chans, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(head_chans),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(head_chans, num_classes, kernel_size=2, stride=2),
)
self.postprocessor = LinkNetPostProcessor(
assume_straight_pages=self.assume_straight_pages, bin_thresh=bin_thresh, box_thresh=box_thresh
)
for n, m in self.named_modules():
# Don't override the initialization of the backbone
if n.startswith("feat_extractor."):
continue
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
nn.init.kaiming_normal_(m.weight.data, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1.0)
m.bias.data.zero_()
def forward(
self,
x: torch.Tensor,
target: Optional[List[np.ndarray]] = None,
return_model_output: bool = False,
return_preds: bool = False,
**kwargs: Any,
) -> Dict[str, Any]:
feats = self.feat_extractor(x)
logits = self.fpn([feats[str(idx)] for idx in range(len(feats))])
logits = self.classifier(logits)
out: Dict[str, Any] = {}
if self.exportable:
out["logits"] = logits
return out
if return_model_output or target is None or return_preds:
prob_map = _bf16_to_float32(torch.sigmoid(logits))
if return_model_output:
out["out_map"] = prob_map
if target is None or return_preds:
# Post-process boxes
out["preds"] = [
dict(zip(self.class_names, preds))
for preds in self.postprocessor(prob_map.detach().cpu().permute((0, 2, 3, 1)).numpy())
]
if target is not None:
loss = self.compute_loss(logits, target)
out["loss"] = loss
return out
def compute_loss(
self,
out_map: torch.Tensor,
target: List[np.ndarray],
gamma: float = 2.0,
alpha: float = 0.5,
eps: float = 1e-8,
) -> torch.Tensor:
"""Compute linknet loss, BCE with boosted box edges or focal loss. Focal loss implementation based on
<https://github.com/tensorflow/addons/>`_.
Args:
----
out_map: output feature map of the model of shape (N, num_classes, H, W)
target: list of dictionary where each dict has a `boxes` and a `flags` entry
gamma: modulating factor in the focal loss formula
alpha: balancing factor in the focal loss formula
eps: epsilon factor in dice loss
Returns:
-------
A loss tensor
"""
_target, _mask = self.build_target(target, out_map.shape[1:], False) # type: ignore[arg-type]
seg_target, seg_mask = torch.from_numpy(_target).to(dtype=out_map.dtype), torch.from_numpy(_mask)
seg_target, seg_mask = seg_target.to(out_map.device), seg_mask.to(out_map.device)
seg_mask = seg_mask.to(dtype=torch.float32)
bce_loss = F.binary_cross_entropy_with_logits(out_map, seg_target, reduction="none")
proba_map = torch.sigmoid(out_map)
# Focal loss
if gamma < 0:
raise ValueError("Value of gamma should be greater than or equal to zero.")
p_t = proba_map * seg_target + (1 - proba_map) * (1 - seg_target)
alpha_t = alpha * seg_target + (1 - alpha) * (1 - seg_target)
# Unreduced version
focal_loss = alpha_t * (1 - p_t) ** gamma * bce_loss
# Class reduced
focal_loss = (seg_mask * focal_loss).sum((0, 1, 2, 3)) / seg_mask.sum((0, 1, 2, 3))
# Compute dice loss for each class
dice_map = torch.softmax(out_map, dim=1) if len(self.class_names) > 1 else proba_map
# Class reduced
inter = (seg_mask * dice_map * seg_target).sum((0, 2, 3))
cardinality = (seg_mask * (dice_map + seg_target)).sum((0, 2, 3))
dice_loss = (1 - 2 * inter / (cardinality + eps)).mean()
# Return the full loss (equal sum of focal loss and dice loss)
return focal_loss + dice_loss
def _linknet(
arch: str,
pretrained: bool,
backbone_fn: Callable[[bool], nn.Module],
fpn_layers: List[str],
pretrained_backbone: bool = True,
ignore_keys: Optional[List[str]] = None,
**kwargs: Any,
) -> LinkNet:
pretrained_backbone = pretrained_backbone and not pretrained
# Build the feature extractor
backbone = backbone_fn(pretrained_backbone)
feat_extractor = IntermediateLayerGetter(
backbone,
{layer_name: str(idx) for idx, layer_name in enumerate(fpn_layers)},
)
if not kwargs.get("class_names", None):
kwargs["class_names"] = default_cfgs[arch].get("class_names", [CLASS_NAME])
else:
kwargs["class_names"] = sorted(kwargs["class_names"])
# Build the model
model = LinkNet(feat_extractor, cfg=default_cfgs[arch], **kwargs)
# Load pretrained parameters
if pretrained:
# The number of class_names is not the same as the number of classes in the pretrained model =>
# remove the layer weights
_ignore_keys = (
ignore_keys if kwargs["class_names"] != default_cfgs[arch].get("class_names", [CLASS_NAME]) else None
)
load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys)
return model
def linknet_resnet18(pretrained: bool = False, **kwargs: Any) -> LinkNet:
"""LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation"
<https://arxiv.org/pdf/1707.03718.pdf>`_.
>>> import torch
>>> from doctr.models import linknet_resnet18
>>> model = linknet_resnet18(pretrained=True).eval()
>>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32)
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text detection dataset
**kwargs: keyword arguments of the LinkNet architecture
Returns:
-------
text detection architecture
"""
return _linknet(
"linknet_resnet18",
pretrained,
resnet18,
["layer1", "layer2", "layer3", "layer4"],
ignore_keys=[
"classifier.6.weight",
"classifier.6.bias",
],
**kwargs,
)
def linknet_resnet34(pretrained: bool = False, **kwargs: Any) -> LinkNet:
"""LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation"
<https://arxiv.org/pdf/1707.03718.pdf>`_.
>>> import torch
>>> from doctr.models import linknet_resnet34
>>> model = linknet_resnet34(pretrained=True).eval()
>>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32)
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text detection dataset
**kwargs: keyword arguments of the LinkNet architecture
Returns:
-------
text detection architecture
"""
return _linknet(
"linknet_resnet34",
pretrained,
resnet34,
["layer1", "layer2", "layer3", "layer4"],
ignore_keys=[
"classifier.6.weight",
"classifier.6.bias",
],
**kwargs,
)
def linknet_resnet50(pretrained: bool = False, **kwargs: Any) -> LinkNet:
"""LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation"
<https://arxiv.org/pdf/1707.03718.pdf>`_.
>>> import torch
>>> from doctr.models import linknet_resnet50
>>> model = linknet_resnet50(pretrained=True).eval()
>>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32)
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text detection dataset
**kwargs: keyword arguments of the LinkNet architecture
Returns:
-------
text detection architecture
"""
return _linknet(
"linknet_resnet50",
pretrained,
resnet50,
["layer1", "layer2", "layer3", "layer4"],
ignore_keys=[
"classifier.6.weight",
"classifier.6.bias",
],
**kwargs,
)
|