File size: 13,810 Bytes
153628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

from typing import Any, Callable, Dict, List, Optional, Tuple

import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.models._utils import IntermediateLayerGetter

from doctr.file_utils import CLASS_NAME
from doctr.models.classification import resnet18, resnet34, resnet50

from ...utils import _bf16_to_float32, load_pretrained_params
from .base import LinkNetPostProcessor, _LinkNet

__all__ = ["LinkNet", "linknet_resnet18", "linknet_resnet34", "linknet_resnet50"]


default_cfgs: Dict[str, Dict[str, Any]] = {
    "linknet_resnet18": {
        "input_shape": (3, 1024, 1024),
        "mean": (0.798, 0.785, 0.772),
        "std": (0.264, 0.2749, 0.287),
        "url": "https://doctr-static.mindee.com/models?id=v0.7.0/linknet_resnet18-e47a14dc.pt&src=0",
    },
    "linknet_resnet34": {
        "input_shape": (3, 1024, 1024),
        "mean": (0.798, 0.785, 0.772),
        "std": (0.264, 0.2749, 0.287),
        "url": "https://doctr-static.mindee.com/models?id=v0.7.0/linknet_resnet34-9ca2df3e.pt&src=0",
    },
    "linknet_resnet50": {
        "input_shape": (3, 1024, 1024),
        "mean": (0.798, 0.785, 0.772),
        "std": (0.264, 0.2749, 0.287),
        "url": "https://doctr-static.mindee.com/models?id=v0.7.0/linknet_resnet50-6cf565c1.pt&src=0",
    },
}


class LinkNetFPN(nn.Module):
    def __init__(self, layer_shapes: List[Tuple[int, int, int]]) -> None:
        super().__init__()
        strides = [
            1 if (in_shape[-1] == out_shape[-1]) else 2
            for in_shape, out_shape in zip(layer_shapes[:-1], layer_shapes[1:])
        ]

        chans = [shape[0] for shape in layer_shapes]

        _decoder_layers = [
            self.decoder_block(ochan, ichan, stride) for ichan, ochan, stride in zip(chans[:-1], chans[1:], strides)
        ]

        self.decoders = nn.ModuleList(_decoder_layers)

    @staticmethod
    def decoder_block(in_chan: int, out_chan: int, stride: int) -> nn.Sequential:
        """Creates a LinkNet decoder block"""
        mid_chan = in_chan // 4
        return nn.Sequential(
            nn.Conv2d(in_chan, mid_chan, kernel_size=1, bias=False),
            nn.BatchNorm2d(mid_chan),
            nn.ReLU(inplace=True),
            nn.ConvTranspose2d(mid_chan, mid_chan, 3, padding=1, output_padding=stride - 1, stride=stride, bias=False),
            nn.BatchNorm2d(mid_chan),
            nn.ReLU(inplace=True),
            nn.Conv2d(mid_chan, out_chan, kernel_size=1, bias=False),
            nn.BatchNorm2d(out_chan),
            nn.ReLU(inplace=True),
        )

    def forward(self, feats: List[torch.Tensor]) -> torch.Tensor:
        out = feats[-1]
        for decoder, fmap in zip(self.decoders[::-1], feats[:-1][::-1]):
            out = decoder(out) + fmap

        out = self.decoders[0](out)

        return out


class LinkNet(nn.Module, _LinkNet):
    """LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation"
    <https://arxiv.org/pdf/1707.03718.pdf>`_.

    Args:
    ----
        feature extractor: the backbone serving as feature extractor
        bin_thresh: threshold for binarization of the output feature map
        box_thresh: minimal objectness score to consider a box
        head_chans: number of channels in the head layers
        assume_straight_pages: if True, fit straight bounding boxes only
        exportable: onnx exportable returns only logits
        cfg: the configuration dict of the model
        class_names: list of class names
    """

    def __init__(
        self,
        feat_extractor: IntermediateLayerGetter,
        bin_thresh: float = 0.1,
        box_thresh: float = 0.1,
        head_chans: int = 32,
        assume_straight_pages: bool = True,
        exportable: bool = False,
        cfg: Optional[Dict[str, Any]] = None,
        class_names: List[str] = [CLASS_NAME],
    ) -> None:
        super().__init__()
        self.class_names = class_names
        num_classes: int = len(self.class_names)
        self.cfg = cfg
        self.exportable = exportable
        self.assume_straight_pages = assume_straight_pages

        self.feat_extractor = feat_extractor
        # Identify the number of channels for the FPN initialization
        self.feat_extractor.eval()
        with torch.no_grad():
            in_shape = (3, 512, 512)
            out = self.feat_extractor(torch.zeros((1, *in_shape)))
            # Get the shapes of the extracted feature maps
            _shapes = [v.shape[1:] for _, v in out.items()]
            # Prepend the expected shapes of the first encoder
            _shapes = [(_shapes[0][0], in_shape[1] // 4, in_shape[2] // 4)] + _shapes
        self.feat_extractor.train()

        self.fpn = LinkNetFPN(_shapes)

        self.classifier = nn.Sequential(
            nn.ConvTranspose2d(
                _shapes[0][0], head_chans, kernel_size=3, padding=1, output_padding=1, stride=2, bias=False
            ),
            nn.BatchNorm2d(head_chans),
            nn.ReLU(inplace=True),
            nn.Conv2d(head_chans, head_chans, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(head_chans),
            nn.ReLU(inplace=True),
            nn.ConvTranspose2d(head_chans, num_classes, kernel_size=2, stride=2),
        )

        self.postprocessor = LinkNetPostProcessor(
            assume_straight_pages=self.assume_straight_pages, bin_thresh=bin_thresh, box_thresh=box_thresh
        )

        for n, m in self.named_modules():
            # Don't override the initialization of the backbone
            if n.startswith("feat_extractor."):
                continue
            if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
                nn.init.kaiming_normal_(m.weight.data, mode="fan_out", nonlinearity="relu")
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1.0)
                m.bias.data.zero_()

    def forward(
        self,
        x: torch.Tensor,
        target: Optional[List[np.ndarray]] = None,
        return_model_output: bool = False,
        return_preds: bool = False,
        **kwargs: Any,
    ) -> Dict[str, Any]:
        feats = self.feat_extractor(x)
        logits = self.fpn([feats[str(idx)] for idx in range(len(feats))])
        logits = self.classifier(logits)

        out: Dict[str, Any] = {}
        if self.exportable:
            out["logits"] = logits
            return out

        if return_model_output or target is None or return_preds:
            prob_map = _bf16_to_float32(torch.sigmoid(logits))
        if return_model_output:
            out["out_map"] = prob_map

        if target is None or return_preds:
            # Post-process boxes
            out["preds"] = [
                dict(zip(self.class_names, preds))
                for preds in self.postprocessor(prob_map.detach().cpu().permute((0, 2, 3, 1)).numpy())
            ]

        if target is not None:
            loss = self.compute_loss(logits, target)
            out["loss"] = loss

        return out

    def compute_loss(
        self,
        out_map: torch.Tensor,
        target: List[np.ndarray],
        gamma: float = 2.0,
        alpha: float = 0.5,
        eps: float = 1e-8,
    ) -> torch.Tensor:
        """Compute linknet loss, BCE with boosted box edges or focal loss. Focal loss implementation based on
        <https://github.com/tensorflow/addons/>`_.

        Args:
        ----
            out_map: output feature map of the model of shape (N, num_classes, H, W)
            target: list of dictionary where each dict has a `boxes` and a `flags` entry
            gamma: modulating factor in the focal loss formula
            alpha: balancing factor in the focal loss formula
            eps: epsilon factor in dice loss

        Returns:
        -------
            A loss tensor
        """
        _target, _mask = self.build_target(target, out_map.shape[1:], False)  # type: ignore[arg-type]

        seg_target, seg_mask = torch.from_numpy(_target).to(dtype=out_map.dtype), torch.from_numpy(_mask)
        seg_target, seg_mask = seg_target.to(out_map.device), seg_mask.to(out_map.device)
        seg_mask = seg_mask.to(dtype=torch.float32)

        bce_loss = F.binary_cross_entropy_with_logits(out_map, seg_target, reduction="none")
        proba_map = torch.sigmoid(out_map)

        # Focal loss
        if gamma < 0:
            raise ValueError("Value of gamma should be greater than or equal to zero.")
        p_t = proba_map * seg_target + (1 - proba_map) * (1 - seg_target)
        alpha_t = alpha * seg_target + (1 - alpha) * (1 - seg_target)
        # Unreduced version
        focal_loss = alpha_t * (1 - p_t) ** gamma * bce_loss
        # Class reduced
        focal_loss = (seg_mask * focal_loss).sum((0, 1, 2, 3)) / seg_mask.sum((0, 1, 2, 3))

        # Compute dice loss for each class
        dice_map = torch.softmax(out_map, dim=1) if len(self.class_names) > 1 else proba_map
        # Class reduced
        inter = (seg_mask * dice_map * seg_target).sum((0, 2, 3))
        cardinality = (seg_mask * (dice_map + seg_target)).sum((0, 2, 3))
        dice_loss = (1 - 2 * inter / (cardinality + eps)).mean()

        # Return the full loss (equal sum of focal loss and dice loss)
        return focal_loss + dice_loss


def _linknet(
    arch: str,
    pretrained: bool,
    backbone_fn: Callable[[bool], nn.Module],
    fpn_layers: List[str],
    pretrained_backbone: bool = True,
    ignore_keys: Optional[List[str]] = None,
    **kwargs: Any,
) -> LinkNet:
    pretrained_backbone = pretrained_backbone and not pretrained

    # Build the feature extractor
    backbone = backbone_fn(pretrained_backbone)
    feat_extractor = IntermediateLayerGetter(
        backbone,
        {layer_name: str(idx) for idx, layer_name in enumerate(fpn_layers)},
    )
    if not kwargs.get("class_names", None):
        kwargs["class_names"] = default_cfgs[arch].get("class_names", [CLASS_NAME])
    else:
        kwargs["class_names"] = sorted(kwargs["class_names"])

    # Build the model
    model = LinkNet(feat_extractor, cfg=default_cfgs[arch], **kwargs)
    # Load pretrained parameters
    if pretrained:
        # The number of class_names is not the same as the number of classes in the pretrained model =>
        # remove the layer weights
        _ignore_keys = (
            ignore_keys if kwargs["class_names"] != default_cfgs[arch].get("class_names", [CLASS_NAME]) else None
        )
        load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys)

    return model


def linknet_resnet18(pretrained: bool = False, **kwargs: Any) -> LinkNet:
    """LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation"
    <https://arxiv.org/pdf/1707.03718.pdf>`_.

    >>> import torch
    >>> from doctr.models import linknet_resnet18
    >>> model = linknet_resnet18(pretrained=True).eval()
    >>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32)
    >>> out = model(input_tensor)

    Args:
    ----
        pretrained (bool): If True, returns a model pre-trained on our text detection dataset
        **kwargs: keyword arguments of the LinkNet architecture

    Returns:
    -------
        text detection architecture
    """
    return _linknet(
        "linknet_resnet18",
        pretrained,
        resnet18,
        ["layer1", "layer2", "layer3", "layer4"],
        ignore_keys=[
            "classifier.6.weight",
            "classifier.6.bias",
        ],
        **kwargs,
    )


def linknet_resnet34(pretrained: bool = False, **kwargs: Any) -> LinkNet:
    """LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation"
    <https://arxiv.org/pdf/1707.03718.pdf>`_.

    >>> import torch
    >>> from doctr.models import linknet_resnet34
    >>> model = linknet_resnet34(pretrained=True).eval()
    >>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32)
    >>> out = model(input_tensor)

    Args:
    ----
        pretrained (bool): If True, returns a model pre-trained on our text detection dataset
        **kwargs: keyword arguments of the LinkNet architecture

    Returns:
    -------
        text detection architecture
    """
    return _linknet(
        "linknet_resnet34",
        pretrained,
        resnet34,
        ["layer1", "layer2", "layer3", "layer4"],
        ignore_keys=[
            "classifier.6.weight",
            "classifier.6.bias",
        ],
        **kwargs,
    )


def linknet_resnet50(pretrained: bool = False, **kwargs: Any) -> LinkNet:
    """LinkNet as described in `"LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation"
    <https://arxiv.org/pdf/1707.03718.pdf>`_.

    >>> import torch
    >>> from doctr.models import linknet_resnet50
    >>> model = linknet_resnet50(pretrained=True).eval()
    >>> input_tensor = torch.rand((1, 3, 1024, 1024), dtype=torch.float32)
    >>> out = model(input_tensor)

    Args:
    ----
        pretrained (bool): If True, returns a model pre-trained on our text detection dataset
        **kwargs: keyword arguments of the LinkNet architecture

    Returns:
    -------
        text detection architecture
    """
    return _linknet(
        "linknet_resnet50",
        pretrained,
        resnet50,
        ["layer1", "layer2", "layer3", "layer4"],
        ignore_keys=[
            "classifier.6.weight",
            "classifier.6.bias",
        ],
        **kwargs,
    )