File size: 2,083 Bytes
153628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

from typing import Any, Dict, List, Tuple, Union

import numpy as np
import torch
from torch import nn

from doctr.models.preprocessor import PreProcessor
from doctr.models.utils import set_device_and_dtype

__all__ = ["DetectionPredictor"]


class DetectionPredictor(nn.Module):
    """Implements an object able to localize text elements in a document

    Args:
    ----
        pre_processor: transform inputs for easier batched model inference
        model: core detection architecture
    """

    def __init__(
        self,
        pre_processor: PreProcessor,
        model: nn.Module,
    ) -> None:
        super().__init__()
        self.pre_processor = pre_processor
        self.model = model.eval()

    @torch.inference_mode()
    def forward(
        self,
        pages: List[Union[np.ndarray, torch.Tensor]],
        return_maps: bool = False,
        **kwargs: Any,
    ) -> Union[List[Dict[str, np.ndarray]], Tuple[List[Dict[str, np.ndarray]], List[np.ndarray]]]:
        # Dimension check
        if any(page.ndim != 3 for page in pages):
            raise ValueError("incorrect input shape: all pages are expected to be multi-channel 2D images.")

        processed_batches = self.pre_processor(pages)
        _params = next(self.model.parameters())
        self.model, processed_batches = set_device_and_dtype(
            self.model, processed_batches, _params.device, _params.dtype
        )
        predicted_batches = [
            self.model(batch, return_preds=True, return_model_output=True, **kwargs) for batch in processed_batches
        ]
        preds = [pred for batch in predicted_batches for pred in batch["preds"]]
        if return_maps:
            seg_maps = [
                pred.permute(1, 2, 0).detach().cpu().numpy() for batch in predicted_batches for pred in batch["out_map"]
            ]
            return preds, seg_maps
        return preds