Spaces:
Runtime error
Runtime error
File size: 7,464 Bytes
153628e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
# Inspired by: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/hub.py
import json
import logging
import os
import subprocess
import textwrap
from pathlib import Path
from typing import Any
from huggingface_hub import (
HfApi,
Repository,
get_token,
get_token_permission,
hf_hub_download,
login,
snapshot_download,
)
from doctr import models
from doctr.file_utils import is_tf_available, is_torch_available
if is_torch_available():
import torch
__all__ = ["login_to_hub", "push_to_hf_hub", "from_hub", "_save_model_and_config_for_hf_hub"]
AVAILABLE_ARCHS = {
"classification": models.classification.zoo.ARCHS,
"detection": models.detection.zoo.ARCHS,
"recognition": models.recognition.zoo.ARCHS,
}
def login_to_hub() -> None: # pragma: no cover
"""Login to huggingface hub"""
access_token = get_token()
if access_token is not None and get_token_permission(access_token):
logging.info("Huggingface Hub token found and valid")
login(token=access_token, write_permission=True)
else:
login()
# check if git lfs is installed
try:
subprocess.call(["git", "lfs", "version"])
except FileNotFoundError:
raise OSError(
"Looks like you do not have git-lfs installed, please install. \
You can install from https://git-lfs.github.com/. \
Then run `git lfs install` (you only have to do this once)."
)
def _save_model_and_config_for_hf_hub(model: Any, save_dir: str, arch: str, task: str) -> None:
"""Save model and config to disk for pushing to huggingface hub
Args:
----
model: TF or PyTorch model to be saved
save_dir: directory to save model and config
arch: architecture name
task: task name
"""
save_directory = Path(save_dir)
if is_torch_available():
weights_path = save_directory / "pytorch_model.bin"
torch.save(model.state_dict(), weights_path)
elif is_tf_available():
weights_path = save_directory / "tf_model" / "weights"
model.save_weights(str(weights_path))
config_path = save_directory / "config.json"
# add model configuration
model_config = model.cfg
model_config["arch"] = arch
model_config["task"] = task
with config_path.open("w") as f:
json.dump(model_config, f, indent=2, ensure_ascii=False)
def push_to_hf_hub(model: Any, model_name: str, task: str, **kwargs) -> None: # pragma: no cover
"""Save model and its configuration on HF hub
>>> from doctr.models import login_to_hub, push_to_hf_hub
>>> from doctr.models.recognition import crnn_mobilenet_v3_small
>>> login_to_hub()
>>> model = crnn_mobilenet_v3_small(pretrained=True)
>>> push_to_hf_hub(model, 'my-model', 'recognition', arch='crnn_mobilenet_v3_small')
Args:
----
model: TF or PyTorch model to be saved
model_name: name of the model which is also the repository name
task: task name
**kwargs: keyword arguments for push_to_hf_hub
"""
run_config = kwargs.get("run_config", None)
arch = kwargs.get("arch", None)
if run_config is None and arch is None:
raise ValueError("run_config or arch must be specified")
if task not in ["classification", "detection", "recognition"]:
raise ValueError("task must be one of classification, detection, recognition")
# default readme
readme = textwrap.dedent(
f"""
---
language: en
---
<p align="center">
<img src="https://doctr-static.mindee.com/models?id=v0.3.1/Logo_doctr.gif&src=0" width="60%">
</p>
**Optical Character Recognition made seamless & accessible to anyone, powered by TensorFlow 2 & PyTorch**
## Task: {task}
https://github.com/mindee/doctr
### Example usage:
```python
>>> from doctr.io import DocumentFile
>>> from doctr.models import ocr_predictor, from_hub
>>> img = DocumentFile.from_images(['<image_path>'])
>>> # Load your model from the hub
>>> model = from_hub('mindee/my-model')
>>> # Pass it to the predictor
>>> # If your model is a recognition model:
>>> predictor = ocr_predictor(det_arch='db_mobilenet_v3_large',
>>> reco_arch=model,
>>> pretrained=True)
>>> # If your model is a detection model:
>>> predictor = ocr_predictor(det_arch=model,
>>> reco_arch='crnn_mobilenet_v3_small',
>>> pretrained=True)
>>> # Get your predictions
>>> res = predictor(img)
```
"""
)
# add run configuration to readme if available
if run_config is not None:
arch = run_config.arch
readme += textwrap.dedent(
f"""### Run Configuration
\n{json.dumps(vars(run_config), indent=2, ensure_ascii=False)}"""
)
if arch not in AVAILABLE_ARCHS[task]:
raise ValueError(
f"Architecture: {arch} for task: {task} not found.\
\nAvailable architectures: {AVAILABLE_ARCHS}"
)
commit_message = f"Add {model_name} model"
local_cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "huggingface", "hub", model_name)
repo_url = HfApi().create_repo(model_name, token=get_token(), exist_ok=False)
repo = Repository(local_dir=local_cache_dir, clone_from=repo_url, use_auth_token=True)
with repo.commit(commit_message):
_save_model_and_config_for_hf_hub(model, repo.local_dir, arch=arch, task=task)
readme_path = Path(repo.local_dir) / "README.md"
readme_path.write_text(readme)
repo.git_push()
def from_hub(repo_id: str, **kwargs: Any):
"""Instantiate & load a pretrained model from HF hub.
>>> from doctr.models import from_hub
>>> model = from_hub("mindee/fasterrcnn_mobilenet_v3_large_fpn")
Args:
----
repo_id: HuggingFace model hub repo
kwargs: kwargs of `hf_hub_download` or `snapshot_download`
Returns:
-------
Model loaded with the checkpoint
"""
# Get the config
with open(hf_hub_download(repo_id, filename="config.json", **kwargs), "rb") as f:
cfg = json.load(f)
arch = cfg["arch"]
task = cfg["task"]
cfg.pop("arch")
cfg.pop("task")
if task == "classification":
model = models.classification.__dict__[arch](
pretrained=False, classes=cfg["classes"], num_classes=cfg["num_classes"]
)
elif task == "detection":
model = models.detection.__dict__[arch](pretrained=False)
elif task == "recognition":
model = models.recognition.__dict__[arch](pretrained=False, input_shape=cfg["input_shape"], vocab=cfg["vocab"])
# update model cfg
model.cfg = cfg
# Load checkpoint
if is_torch_available():
state_dict = torch.load(hf_hub_download(repo_id, filename="pytorch_model.bin", **kwargs), map_location="cpu")
model.load_state_dict(state_dict)
else: # tf
repo_path = snapshot_download(repo_id, **kwargs)
model.load_weights(os.path.join(repo_path, "tf_model", "weights"))
return model
|