File size: 6,853 Bytes
153628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

from typing import Tuple, Union

import numpy as np
import torch
import torch.nn as nn

__all__ = ["FASTConvLayer"]


class FASTConvLayer(nn.Module):
    """Convolutional layer used in the TextNet and FAST architectures"""

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[int, Tuple[int, int]],
        stride: int = 1,
        dilation: int = 1,
        groups: int = 1,
        bias: bool = False,
    ) -> None:
        super().__init__()

        self.groups = groups
        self.in_channels = in_channels
        self.converted_ks = (kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size

        self.hor_conv, self.hor_bn = None, None
        self.ver_conv, self.ver_bn = None, None

        padding = (int(((self.converted_ks[0] - 1) * dilation) / 2), int(((self.converted_ks[1] - 1) * dilation) / 2))

        self.activation = nn.ReLU(inplace=True)
        self.conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=self.converted_ks,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias,
        )

        self.bn = nn.BatchNorm2d(out_channels)

        if self.converted_ks[1] != 1:
            self.ver_conv = nn.Conv2d(
                in_channels,
                out_channels,
                kernel_size=(self.converted_ks[0], 1),
                padding=(int(((self.converted_ks[0] - 1) * dilation) / 2), 0),
                stride=stride,
                dilation=dilation,
                groups=groups,
                bias=bias,
            )
            self.ver_bn = nn.BatchNorm2d(out_channels)

        if self.converted_ks[0] != 1:
            self.hor_conv = nn.Conv2d(
                in_channels,
                out_channels,
                kernel_size=(1, self.converted_ks[1]),
                padding=(0, int(((self.converted_ks[1] - 1) * dilation) / 2)),
                stride=stride,
                dilation=dilation,
                groups=groups,
                bias=bias,
            )
            self.hor_bn = nn.BatchNorm2d(out_channels)

        self.rbr_identity = nn.BatchNorm2d(in_channels) if out_channels == in_channels and stride == 1 else None

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if hasattr(self, "fused_conv"):
            return self.activation(self.fused_conv(x))

        main_outputs = self.bn(self.conv(x))
        vertical_outputs = self.ver_bn(self.ver_conv(x)) if self.ver_conv is not None and self.ver_bn is not None else 0
        horizontal_outputs = (
            self.hor_bn(self.hor_conv(x)) if self.hor_bn is not None and self.hor_conv is not None else 0
        )
        id_out = self.rbr_identity(x) if self.rbr_identity is not None else 0

        return self.activation(main_outputs + vertical_outputs + horizontal_outputs + id_out)

    # The following logic is used to reparametrize the layer
    # Borrowed from: https://github.com/czczup/FAST/blob/main/models/utils/nas_utils.py
    def _identity_to_conv(
        self, identity: Union[nn.BatchNorm2d, None]
    ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[int, int]]:
        if identity is None or identity.running_var is None:
            return 0, 0
        if not hasattr(self, "id_tensor"):
            input_dim = self.in_channels // self.groups
            kernel_value = np.zeros((self.in_channels, input_dim, 1, 1), dtype=np.float32)
            for i in range(self.in_channels):
                kernel_value[i, i % input_dim, 0, 0] = 1
            id_tensor = torch.from_numpy(kernel_value).to(identity.weight.device)
            self.id_tensor = self._pad_to_mxn_tensor(id_tensor)
        kernel = self.id_tensor
        std = (identity.running_var + identity.eps).sqrt()
        t = (identity.weight / std).reshape(-1, 1, 1, 1)
        return kernel * t, identity.bias - identity.running_mean * identity.weight / std

    def _fuse_bn_tensor(self, conv: nn.Conv2d, bn: nn.BatchNorm2d) -> Tuple[torch.Tensor, torch.Tensor]:
        kernel = conv.weight
        kernel = self._pad_to_mxn_tensor(kernel)
        std = (bn.running_var + bn.eps).sqrt()  # type: ignore
        t = (bn.weight / std).reshape(-1, 1, 1, 1)
        return kernel * t, bn.bias - bn.running_mean * bn.weight / std

    def _get_equivalent_kernel_bias(self) -> Tuple[torch.Tensor, torch.Tensor]:
        kernel_mxn, bias_mxn = self._fuse_bn_tensor(self.conv, self.bn)
        if self.ver_conv is not None:
            kernel_mx1, bias_mx1 = self._fuse_bn_tensor(self.ver_conv, self.ver_bn)  # type: ignore[arg-type]
        else:
            kernel_mx1, bias_mx1 = 0, 0  # type: ignore[assignment]
        if self.hor_conv is not None:
            kernel_1xn, bias_1xn = self._fuse_bn_tensor(self.hor_conv, self.hor_bn)  # type: ignore[arg-type]
        else:
            kernel_1xn, bias_1xn = 0, 0  # type: ignore[assignment]
        kernel_id, bias_id = self._identity_to_conv(self.rbr_identity)
        kernel_mxn = kernel_mxn + kernel_mx1 + kernel_1xn + kernel_id
        bias_mxn = bias_mxn + bias_mx1 + bias_1xn + bias_id
        return kernel_mxn, bias_mxn

    def _pad_to_mxn_tensor(self, kernel: torch.Tensor) -> torch.Tensor:
        kernel_height, kernel_width = self.converted_ks
        height, width = kernel.shape[2:]
        pad_left_right = (kernel_width - width) // 2
        pad_top_down = (kernel_height - height) // 2
        return torch.nn.functional.pad(kernel, [pad_left_right, pad_left_right, pad_top_down, pad_top_down], value=0)

    def reparameterize_layer(self):
        if hasattr(self, "fused_conv"):
            return
        kernel, bias = self._get_equivalent_kernel_bias()
        self.fused_conv = nn.Conv2d(
            in_channels=self.conv.in_channels,
            out_channels=self.conv.out_channels,
            kernel_size=self.conv.kernel_size,  # type: ignore[arg-type]
            stride=self.conv.stride,  # type: ignore[arg-type]
            padding=self.conv.padding,  # type: ignore[arg-type]
            dilation=self.conv.dilation,  # type: ignore[arg-type]
            groups=self.conv.groups,
            bias=True,
        )
        self.fused_conv.weight.data = kernel
        self.fused_conv.bias.data = bias  # type: ignore[union-attr]
        for para in self.parameters():
            para.detach_()
        for attr in ["conv", "bn", "ver_conv", "ver_bn", "hor_conv", "hor_bn"]:
            if hasattr(self, attr):
                self.__delattr__(attr)

        if hasattr(self, "rbr_identity"):
            self.__delattr__("rbr_identity")