Spaces:
Runtime error
Runtime error
File size: 11,666 Bytes
153628e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple, Union
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import Model, Sequential
from doctr.datasets import VOCABS
from ...classification import mobilenet_v3_large_r, mobilenet_v3_small_r, vgg16_bn_r
from ...utils.tensorflow import _bf16_to_float32, load_pretrained_params
from ..core import RecognitionModel, RecognitionPostProcessor
__all__ = ["CRNN", "crnn_vgg16_bn", "crnn_mobilenet_v3_small", "crnn_mobilenet_v3_large"]
default_cfgs: Dict[str, Dict[str, Any]] = {
"crnn_vgg16_bn": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (32, 128, 3),
"vocab": VOCABS["legacy_french"],
"url": "https://doctr-static.mindee.com/models?id=v0.3.0/crnn_vgg16_bn-76b7f2c6.zip&src=0",
},
"crnn_mobilenet_v3_small": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (32, 128, 3),
"vocab": VOCABS["french"],
"url": "https://doctr-static.mindee.com/models?id=v0.3.1/crnn_mobilenet_v3_small-7f36edec.zip&src=0",
},
"crnn_mobilenet_v3_large": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (32, 128, 3),
"vocab": VOCABS["french"],
"url": "https://doctr-static.mindee.com/models?id=v0.6.0/crnn_mobilenet_v3_large-cccc50b1.zip&src=0",
},
}
class CTCPostProcessor(RecognitionPostProcessor):
"""Postprocess raw prediction of the model (logits) to a list of words using CTC decoding
Args:
----
vocab: string containing the ordered sequence of supported characters
ignore_case: if True, ignore case of letters
ignore_accents: if True, ignore accents of letters
"""
def __call__(
self,
logits: tf.Tensor,
beam_width: int = 1,
top_paths: int = 1,
) -> Union[List[Tuple[str, float]], List[Tuple[List[str], List[float]]]]:
"""Performs decoding of raw output with CTC and decoding of CTC predictions
with label_to_idx mapping dictionnary
Args:
----
logits: raw output of the model, shape BATCH_SIZE X SEQ_LEN X NUM_CLASSES + 1
beam_width: An int scalar >= 0 (beam search beam width).
top_paths: An int scalar >= 0, <= beam_width (controls output size).
Returns:
-------
A list of decoded words of length BATCH_SIZE
"""
# Decode CTC
_decoded, _log_prob = tf.nn.ctc_beam_search_decoder(
tf.transpose(logits, perm=[1, 0, 2]),
tf.fill(tf.shape(logits)[:1], tf.shape(logits)[1]),
beam_width=beam_width,
top_paths=top_paths,
)
_decoded = tf.sparse.concat(
1,
[tf.sparse.expand_dims(dec, axis=1) for dec in _decoded],
expand_nonconcat_dims=True,
) # dim : batchsize x beamwidth x actual_max_len_predictions
out_idxs = tf.sparse.to_dense(_decoded, default_value=len(self.vocab))
# Map it to characters
_decoded_strings_pred = tf.strings.reduce_join(
inputs=tf.nn.embedding_lookup(tf.constant(self._embedding, dtype=tf.string), out_idxs),
axis=-1,
)
_decoded_strings_pred = tf.strings.split(_decoded_strings_pred, "<eos>")
decoded_strings_pred = tf.sparse.to_dense(_decoded_strings_pred.to_sparse(), default_value="not valid")[
:, :, 0
] # dim : batch_size x beam_width
if top_paths == 1:
probs = tf.math.exp(tf.squeeze(_log_prob, axis=1)) # dim : batchsize
decoded_strings_pred = tf.squeeze(decoded_strings_pred, axis=1)
word_values = [word.decode() for word in decoded_strings_pred.numpy().tolist()]
else:
probs = tf.math.exp(_log_prob) # dim : batchsize x beamwidth
word_values = [[word.decode() for word in words] for words in decoded_strings_pred.numpy().tolist()]
return list(zip(word_values, probs.numpy().tolist()))
class CRNN(RecognitionModel, Model):
"""Implements a CRNN architecture as described in `"An End-to-End Trainable Neural Network for Image-based
Sequence Recognition and Its Application to Scene Text Recognition" <https://arxiv.org/pdf/1507.05717.pdf>`_.
Args:
----
feature_extractor: the backbone serving as feature extractor
vocab: vocabulary used for encoding
rnn_units: number of units in the LSTM layers
exportable: onnx exportable returns only logits
beam_width: beam width for beam search decoding
top_paths: number of top paths for beam search decoding
cfg: configuration dictionary
"""
_children_names: List[str] = ["feat_extractor", "decoder", "postprocessor"]
def __init__(
self,
feature_extractor: tf.keras.Model,
vocab: str,
rnn_units: int = 128,
exportable: bool = False,
beam_width: int = 1,
top_paths: int = 1,
cfg: Optional[Dict[str, Any]] = None,
) -> None:
# Initialize kernels
h, w, c = feature_extractor.output_shape[1:]
super().__init__()
self.vocab = vocab
self.max_length = w
self.cfg = cfg
self.exportable = exportable
self.feat_extractor = feature_extractor
self.decoder = Sequential([
layers.Bidirectional(layers.LSTM(units=rnn_units, return_sequences=True)),
layers.Bidirectional(layers.LSTM(units=rnn_units, return_sequences=True)),
layers.Dense(units=len(vocab) + 1),
])
self.decoder.build(input_shape=(None, w, h * c))
self.postprocessor = CTCPostProcessor(vocab=vocab)
self.beam_width = beam_width
self.top_paths = top_paths
def compute_loss(
self,
model_output: tf.Tensor,
target: List[str],
) -> tf.Tensor:
"""Compute CTC loss for the model.
Args:
----
model_output: predicted logits of the model
target: lengths of each gt word inside the batch
Returns:
-------
The loss of the model on the batch
"""
gt, seq_len = self.build_target(target)
batch_len = model_output.shape[0]
input_length = tf.fill((batch_len,), model_output.shape[1])
ctc_loss = tf.nn.ctc_loss(
gt, model_output, seq_len, input_length, logits_time_major=False, blank_index=len(self.vocab)
)
return ctc_loss
def call(
self,
x: tf.Tensor,
target: Optional[List[str]] = None,
return_model_output: bool = False,
return_preds: bool = False,
beam_width: int = 1,
top_paths: int = 1,
**kwargs: Any,
) -> Dict[str, Any]:
if kwargs.get("training", False) and target is None:
raise ValueError("Need to provide labels during training")
features = self.feat_extractor(x, **kwargs)
# B x H x W x C --> B x W x H x C
transposed_feat = tf.transpose(features, perm=[0, 2, 1, 3])
w, h, c = transposed_feat.get_shape().as_list()[1:]
# B x W x H x C --> B x W x H * C
features_seq = tf.reshape(transposed_feat, shape=(-1, w, h * c))
logits = _bf16_to_float32(self.decoder(features_seq, **kwargs))
out: Dict[str, tf.Tensor] = {}
if self.exportable:
out["logits"] = logits
return out
if return_model_output:
out["out_map"] = logits
if target is None or return_preds:
# Post-process boxes
out["preds"] = self.postprocessor(logits, beam_width=beam_width, top_paths=top_paths)
if target is not None:
out["loss"] = self.compute_loss(logits, target)
return out
def _crnn(
arch: str,
pretrained: bool,
backbone_fn,
pretrained_backbone: bool = True,
input_shape: Optional[Tuple[int, int, int]] = None,
**kwargs: Any,
) -> CRNN:
pretrained_backbone = pretrained_backbone and not pretrained
kwargs["vocab"] = kwargs.get("vocab", default_cfgs[arch]["vocab"])
_cfg = deepcopy(default_cfgs[arch])
_cfg["vocab"] = kwargs["vocab"]
_cfg["input_shape"] = input_shape or default_cfgs[arch]["input_shape"]
feat_extractor = backbone_fn(
input_shape=_cfg["input_shape"],
include_top=False,
pretrained=pretrained_backbone,
)
# Build the model
model = CRNN(feat_extractor, cfg=_cfg, **kwargs)
# Load pretrained parameters
if pretrained:
load_pretrained_params(model, _cfg["url"])
return model
def crnn_vgg16_bn(pretrained: bool = False, **kwargs: Any) -> CRNN:
"""CRNN with a VGG-16 backbone as described in `"An End-to-End Trainable Neural Network for Image-based
Sequence Recognition and Its Application to Scene Text Recognition" <https://arxiv.org/pdf/1507.05717.pdf>`_.
>>> import tensorflow as tf
>>> from doctr.models import crnn_vgg16_bn
>>> model = crnn_vgg16_bn(pretrained=True)
>>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text recognition dataset
**kwargs: keyword arguments of the CRNN architecture
Returns:
-------
text recognition architecture
"""
return _crnn("crnn_vgg16_bn", pretrained, vgg16_bn_r, **kwargs)
def crnn_mobilenet_v3_small(pretrained: bool = False, **kwargs: Any) -> CRNN:
"""CRNN with a MobileNet V3 Small backbone as described in `"An End-to-End Trainable Neural Network for Image-based
Sequence Recognition and Its Application to Scene Text Recognition" <https://arxiv.org/pdf/1507.05717.pdf>`_.
>>> import tensorflow as tf
>>> from doctr.models import crnn_mobilenet_v3_small
>>> model = crnn_mobilenet_v3_small(pretrained=True)
>>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text recognition dataset
**kwargs: keyword arguments of the CRNN architecture
Returns:
-------
text recognition architecture
"""
return _crnn("crnn_mobilenet_v3_small", pretrained, mobilenet_v3_small_r, **kwargs)
def crnn_mobilenet_v3_large(pretrained: bool = False, **kwargs: Any) -> CRNN:
"""CRNN with a MobileNet V3 Large backbone as described in `"An End-to-End Trainable Neural Network for Image-based
Sequence Recognition and Its Application to Scene Text Recognition" <https://arxiv.org/pdf/1507.05717.pdf>`_.
>>> import tensorflow as tf
>>> from doctr.models import crnn_mobilenet_v3_large
>>> model = crnn_mobilenet_v3_large(pretrained=True)
>>> input_tensor = tf.random.uniform(shape=[1, 32, 128, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text recognition dataset
**kwargs: keyword arguments of the CRNN architecture
Returns:
-------
text recognition architecture
"""
return _crnn("crnn_mobilenet_v3_large", pretrained, mobilenet_v3_large_r, **kwargs)
|