File size: 2,785 Bytes
153628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

from typing import Any, List, Sequence, Tuple, Union

import numpy as np
import torch
from torch import nn

from doctr.models.preprocessor import PreProcessor
from doctr.models.utils import set_device_and_dtype

from ._utils import remap_preds, split_crops

__all__ = ["RecognitionPredictor"]


class RecognitionPredictor(nn.Module):
    """Implements an object able to identify character sequences in images

    Args:
    ----
        pre_processor: transform inputs for easier batched model inference
        model: core detection architecture
        split_wide_crops: wether to use crop splitting for high aspect ratio crops
    """

    def __init__(
        self,
        pre_processor: PreProcessor,
        model: nn.Module,
        split_wide_crops: bool = True,
    ) -> None:
        super().__init__()
        self.pre_processor = pre_processor
        self.model = model.eval()
        self.split_wide_crops = split_wide_crops
        self.critical_ar = 8  # Critical aspect ratio
        self.dil_factor = 1.4  # Dilation factor to overlap the crops
        self.target_ar = 6  # Target aspect ratio

    @torch.inference_mode()
    def forward(
        self,
        crops: Sequence[Union[np.ndarray, torch.Tensor]],
        **kwargs: Any,
    ) -> List[Tuple[str, float]]:
        if len(crops) == 0:
            return []
        # Dimension check
        if any(crop.ndim != 3 for crop in crops):
            raise ValueError("incorrect input shape: all crops are expected to be multi-channel 2D images.")

        # Split crops that are too wide
        remapped = False
        if self.split_wide_crops:
            new_crops, crop_map, remapped = split_crops(
                crops,  # type: ignore[arg-type]
                self.critical_ar,
                self.target_ar,
                self.dil_factor,
                isinstance(crops[0], np.ndarray),
            )
            if remapped:
                crops = new_crops

        # Resize & batch them
        processed_batches = self.pre_processor(crops)

        # Forward it
        _params = next(self.model.parameters())
        self.model, processed_batches = set_device_and_dtype(
            self.model, processed_batches, _params.device, _params.dtype
        )
        raw = [self.model(batch, return_preds=True, **kwargs)["preds"] for batch in processed_batches]

        # Process outputs
        out = [charseq for batch in raw for charseq in batch]

        # Remap crops
        if self.split_wide_crops and remapped:
            out = remap_preds(out, crop_map, self.dil_factor)

        return out