Spaces:
Runtime error
Runtime error
File size: 15,118 Bytes
153628e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Tuple
import torch
from torch import nn
from torch.nn import functional as F
from torchvision.models._utils import IntermediateLayerGetter
from doctr.datasets import VOCABS
from ...classification import resnet31
from ...utils.pytorch import _bf16_to_float32, load_pretrained_params
from ..core import RecognitionModel, RecognitionPostProcessor
__all__ = ["SAR", "sar_resnet31"]
default_cfgs: Dict[str, Dict[str, Any]] = {
"sar_resnet31": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (3, 32, 128),
"vocab": VOCABS["french"],
"url": "https://doctr-static.mindee.com/models?id=v0.7.0/sar_resnet31-9a1deedf.pt&src=0",
},
}
class SAREncoder(nn.Module):
def __init__(self, in_feats: int, rnn_units: int, dropout_prob: float = 0.0) -> None:
super().__init__()
self.rnn = nn.LSTM(in_feats, rnn_units, 2, batch_first=True, dropout=dropout_prob)
self.linear = nn.Linear(rnn_units, rnn_units)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# (N, L, C) --> (N, T, C)
encoded = self.rnn(x)[0]
# (N, C)
return self.linear(encoded[:, -1, :])
class AttentionModule(nn.Module):
def __init__(self, feat_chans: int, state_chans: int, attention_units: int) -> None:
super().__init__()
self.feat_conv = nn.Conv2d(feat_chans, attention_units, kernel_size=3, padding=1)
# No need to add another bias since both tensors are summed together
self.state_conv = nn.Conv2d(state_chans, attention_units, kernel_size=1, bias=False)
self.attention_projector = nn.Conv2d(attention_units, 1, kernel_size=1, bias=False)
def forward(
self,
features: torch.Tensor, # (N, C, H, W)
hidden_state: torch.Tensor, # (N, C)
) -> torch.Tensor:
H_f, W_f = features.shape[2:]
# (N, feat_chans, H, W) --> (N, attention_units, H, W)
feat_projection = self.feat_conv(features)
# (N, state_chans, 1, 1) --> (N, attention_units, 1, 1)
hidden_state = hidden_state.view(hidden_state.size(0), hidden_state.size(1), 1, 1)
state_projection = self.state_conv(hidden_state)
state_projection = state_projection.expand(-1, -1, H_f, W_f)
# (N, attention_units, 1, 1) --> (N, attention_units, H_f, W_f)
attention_weights = torch.tanh(feat_projection + state_projection)
# (N, attention_units, H_f, W_f) --> (N, 1, H_f, W_f)
attention_weights = self.attention_projector(attention_weights)
B, C, H, W = attention_weights.size()
# (N, H, W) --> (N, 1, H, W)
attention_weights = torch.softmax(attention_weights.view(B, -1), dim=-1).view(B, C, H, W)
# fuse features and attention weights (N, C)
return (features * attention_weights).sum(dim=(2, 3))
class SARDecoder(nn.Module):
"""Implements decoder module of the SAR model
Args:
----
rnn_units: number of hidden units in recurrent cells
max_length: maximum length of a sequence
vocab_size: number of classes in the model alphabet
embedding_units: number of hidden embedding units
attention_units: number of hidden attention units
"""
def __init__(
self,
rnn_units: int,
max_length: int,
vocab_size: int,
embedding_units: int,
attention_units: int,
feat_chans: int = 512,
dropout_prob: float = 0.0,
) -> None:
super().__init__()
self.vocab_size = vocab_size
self.max_length = max_length
self.embed = nn.Linear(self.vocab_size + 1, embedding_units)
self.embed_tgt = nn.Embedding(embedding_units, self.vocab_size + 1)
self.attention_module = AttentionModule(feat_chans, rnn_units, attention_units)
self.lstm_cell = nn.LSTMCell(rnn_units, rnn_units)
self.output_dense = nn.Linear(2 * rnn_units, self.vocab_size + 1)
self.dropout = nn.Dropout(dropout_prob)
def forward(
self,
features: torch.Tensor, # (N, C, H, W)
holistic: torch.Tensor, # (N, C)
gt: Optional[torch.Tensor] = None, # (N, L)
) -> torch.Tensor:
if gt is not None:
gt_embedding = self.embed_tgt(gt)
logits_list: List[torch.Tensor] = []
for t in range(self.max_length + 1): # 32
if t == 0:
# step to init the first states of the LSTMCell
hidden_state_init = cell_state_init = torch.zeros(
features.size(0), features.size(1), device=features.device, dtype=features.dtype
)
hidden_state, cell_state = hidden_state_init, cell_state_init
prev_symbol = holistic
elif t == 1:
# step to init a 'blank' sequence of length vocab_size + 1 filled with zeros
# (N, vocab_size + 1) --> (N, embedding_units)
prev_symbol = torch.zeros(
features.size(0), self.vocab_size + 1, device=features.device, dtype=features.dtype
)
prev_symbol = self.embed(prev_symbol)
else:
if gt is not None and self.training:
# (N, embedding_units) -2 because of <bos> and <eos> (same)
prev_symbol = self.embed(gt_embedding[:, t - 2])
else:
# -1 to start at timestep where prev_symbol was initialized
index = logits_list[t - 1].argmax(-1)
# update prev_symbol with ones at the index of the previous logit vector
prev_symbol = self.embed(self.embed_tgt(index))
# (N, C), (N, C) take the last hidden state and cell state from current timestep
hidden_state_init, cell_state_init = self.lstm_cell(prev_symbol, (hidden_state_init, cell_state_init))
hidden_state, cell_state = self.lstm_cell(hidden_state_init, (hidden_state, cell_state))
# (N, C, H, W), (N, C) --> (N, C)
glimpse = self.attention_module(features, hidden_state)
# (N, C), (N, C) --> (N, 2 * C)
logits = torch.cat([hidden_state, glimpse], dim=1)
logits = self.dropout(logits)
# (N, vocab_size + 1)
logits_list.append(self.output_dense(logits))
# (max_length + 1, N, vocab_size + 1) --> (N, max_length + 1, vocab_size + 1)
return torch.stack(logits_list[1:]).permute(1, 0, 2)
class SAR(nn.Module, RecognitionModel):
"""Implements a SAR architecture as described in `"Show, Attend and Read:A Simple and Strong Baseline for
Irregular Text Recognition" <https://arxiv.org/pdf/1811.00751.pdf>`_.
Args:
----
feature_extractor: the backbone serving as feature extractor
vocab: vocabulary used for encoding
rnn_units: number of hidden units in both encoder and decoder LSTM
embedding_units: number of embedding units
attention_units: number of hidden units in attention module
max_length: maximum word length handled by the model
dropout_prob: dropout probability of the encoder LSTM
exportable: onnx exportable returns only logits
cfg: dictionary containing information about the model
"""
def __init__(
self,
feature_extractor,
vocab: str,
rnn_units: int = 512,
embedding_units: int = 512,
attention_units: int = 512,
max_length: int = 30,
dropout_prob: float = 0.0,
input_shape: Tuple[int, int, int] = (3, 32, 128),
exportable: bool = False,
cfg: Optional[Dict[str, Any]] = None,
) -> None:
super().__init__()
self.vocab = vocab
self.exportable = exportable
self.cfg = cfg
self.max_length = max_length + 1 # Add 1 timestep for EOS after the longest word
self.feat_extractor = feature_extractor
# Size the LSTM
self.feat_extractor.eval()
with torch.no_grad():
out_shape = self.feat_extractor(torch.zeros((1, *input_shape)))["features"].shape
# Switch back to original mode
self.feat_extractor.train()
self.encoder = SAREncoder(out_shape[1], rnn_units, dropout_prob)
self.decoder = SARDecoder(
rnn_units,
self.max_length,
len(self.vocab),
embedding_units,
attention_units,
dropout_prob=dropout_prob,
)
self.postprocessor = SARPostProcessor(vocab=vocab)
for n, m in self.named_modules():
# Don't override the initialization of the backbone
if n.startswith("feat_extractor."):
continue
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(
self,
x: torch.Tensor,
target: Optional[List[str]] = None,
return_model_output: bool = False,
return_preds: bool = False,
) -> Dict[str, Any]:
features = self.feat_extractor(x)["features"]
# NOTE: use max instead of functional max_pool2d which leads to ONNX incompatibility (kernel_size)
# Vertical max pooling (N, C, H, W) --> (N, C, W)
pooled_features = features.max(dim=-2).values
# (N, W, C)
pooled_features = pooled_features.permute(0, 2, 1).contiguous()
# (N, C)
encoded = self.encoder(pooled_features)
if target is not None:
_gt, _seq_len = self.build_target(target)
gt, seq_len = torch.from_numpy(_gt).to(dtype=torch.long), torch.tensor(_seq_len)
gt, seq_len = gt.to(x.device), seq_len.to(x.device)
if self.training and target is None:
raise ValueError("Need to provide labels during training for teacher forcing")
decoded_features = _bf16_to_float32(self.decoder(features, encoded, gt=None if target is None else gt))
out: Dict[str, Any] = {}
if self.exportable:
out["logits"] = decoded_features
return out
if return_model_output:
out["out_map"] = decoded_features
if target is None or return_preds:
# Post-process boxes
out["preds"] = self.postprocessor(decoded_features)
if target is not None:
out["loss"] = self.compute_loss(decoded_features, gt, seq_len)
return out
@staticmethod
def compute_loss(
model_output: torch.Tensor,
gt: torch.Tensor,
seq_len: torch.Tensor,
) -> torch.Tensor:
"""Compute categorical cross-entropy loss for the model.
Sequences are masked after the EOS character.
Args:
----
model_output: predicted logits of the model
gt: the encoded tensor with gt labels
seq_len: lengths of each gt word inside the batch
Returns:
-------
The loss of the model on the batch
"""
# Input length : number of timesteps
input_len = model_output.shape[1]
# Add one for additional <eos> token
seq_len = seq_len + 1
# Compute loss
# (N, L, vocab_size + 1)
cce = F.cross_entropy(model_output.permute(0, 2, 1), gt, reduction="none")
mask_2d = torch.arange(input_len, device=model_output.device)[None, :] >= seq_len[:, None]
cce[mask_2d] = 0
ce_loss = cce.sum(1) / seq_len.to(dtype=model_output.dtype)
return ce_loss.mean()
class SARPostProcessor(RecognitionPostProcessor):
"""Post processor for SAR architectures
Args:
----
vocab: string containing the ordered sequence of supported characters
"""
def __call__(
self,
logits: torch.Tensor,
) -> List[Tuple[str, float]]:
# compute pred with argmax for attention models
out_idxs = logits.argmax(-1)
# N x L
probs = torch.gather(torch.softmax(logits, -1), -1, out_idxs.unsqueeze(-1)).squeeze(-1)
# Take the minimum confidence of the sequence
probs = probs.min(dim=1).values.detach().cpu()
# Manual decoding
word_values = [
"".join(self._embedding[idx] for idx in encoded_seq).split("<eos>")[0]
for encoded_seq in out_idxs.detach().cpu().numpy()
]
return list(zip(word_values, probs.numpy().clip(0, 1).tolist()))
def _sar(
arch: str,
pretrained: bool,
backbone_fn: Callable[[bool], nn.Module],
layer: str,
pretrained_backbone: bool = True,
ignore_keys: Optional[List[str]] = None,
**kwargs: Any,
) -> SAR:
pretrained_backbone = pretrained_backbone and not pretrained
# Patch the config
_cfg = deepcopy(default_cfgs[arch])
_cfg["vocab"] = kwargs.get("vocab", _cfg["vocab"])
_cfg["input_shape"] = kwargs.get("input_shape", _cfg["input_shape"])
# Feature extractor
feat_extractor = IntermediateLayerGetter(
backbone_fn(pretrained_backbone),
{layer: "features"},
)
kwargs["vocab"] = _cfg["vocab"]
kwargs["input_shape"] = _cfg["input_shape"]
# Build the model
model = SAR(feat_extractor, cfg=_cfg, **kwargs)
# Load pretrained parameters
if pretrained:
# The number of classes is not the same as the number of classes in the pretrained model =>
# remove the last layer weights
_ignore_keys = ignore_keys if _cfg["vocab"] != default_cfgs[arch]["vocab"] else None
load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys)
return model
def sar_resnet31(pretrained: bool = False, **kwargs: Any) -> SAR:
"""SAR with a resnet-31 feature extractor as described in `"Show, Attend and Read:A Simple and Strong
Baseline for Irregular Text Recognition" <https://arxiv.org/pdf/1811.00751.pdf>`_.
>>> import torch
>>> from doctr.models import sar_resnet31
>>> model = sar_resnet31(pretrained=False)
>>> input_tensor = torch.rand((1, 3, 32, 128))
>>> out = model(input_tensor)
Args:
----
pretrained (bool): If True, returns a model pre-trained on our text recognition dataset
**kwargs: keyword arguments of the SAR architecture
Returns:
-------
text recognition architecture
"""
return _sar(
"sar_resnet31",
pretrained,
resnet31,
"10",
ignore_keys=[
"decoder.embed.weight",
"decoder.embed_tgt.weight",
"decoder.output_dense.weight",
"decoder.output_dense.bias",
],
**kwargs,
)
|