Spaces:
Runtime error
Runtime error
File size: 5,007 Bytes
153628e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
from copy import deepcopy
from typing import Tuple
import numpy as np
import torch
from torchvision.transforms import functional as F
from doctr.utils.geometry import rotate_abs_geoms
from .base import create_shadow_mask, crop_boxes
__all__ = ["invert_colors", "rotate_sample", "crop_detection", "random_shadow"]
def invert_colors(img: torch.Tensor, min_val: float = 0.6) -> torch.Tensor:
"""Invert the colors of an image
Args:
----
img : torch.Tensor, the image to invert
min_val : minimum value of the random shift
Returns:
-------
the inverted image
"""
out = F.rgb_to_grayscale(img, num_output_channels=3)
# Random RGB shift
shift_shape = [img.shape[0], 3, 1, 1] if img.ndim == 4 else [3, 1, 1]
rgb_shift = min_val + (1 - min_val) * torch.rand(shift_shape)
# Inverse the color
if out.dtype == torch.uint8:
out = (out.to(dtype=rgb_shift.dtype) * rgb_shift).to(dtype=torch.uint8)
else:
out = out * rgb_shift.to(dtype=out.dtype)
# Inverse the color
out = 255 - out if out.dtype == torch.uint8 else 1 - out
return out
def rotate_sample(
img: torch.Tensor,
geoms: np.ndarray,
angle: float,
expand: bool = False,
) -> Tuple[torch.Tensor, np.ndarray]:
"""Rotate image around the center, interpolation=NEAREST, pad with 0 (black)
Args:
----
img: image to rotate
geoms: array of geometries of shape (N, 4) or (N, 4, 2)
angle: angle in degrees. +: counter-clockwise, -: clockwise
expand: whether the image should be padded before the rotation
Returns:
-------
A tuple of rotated img (tensor), rotated geometries of shape (N, 4, 2)
"""
rotated_img = F.rotate(img, angle=angle, fill=0, expand=expand) # Interpolation NEAREST by default
rotated_img = rotated_img[:3] # when expand=True, it expands to RGBA channels
# Get absolute coords
_geoms = deepcopy(geoms)
if _geoms.shape[1:] == (4,):
if np.max(_geoms) <= 1:
_geoms[:, [0, 2]] *= img.shape[-1]
_geoms[:, [1, 3]] *= img.shape[-2]
elif _geoms.shape[1:] == (4, 2):
if np.max(_geoms) <= 1:
_geoms[..., 0] *= img.shape[-1]
_geoms[..., 1] *= img.shape[-2]
else:
raise AssertionError("invalid format for arg `geoms`")
# Rotate the boxes: xmin, ymin, xmax, ymax or polygons --> (4, 2) polygon
rotated_geoms: np.ndarray = rotate_abs_geoms(
_geoms,
angle,
img.shape[1:], # type: ignore[arg-type]
expand,
).astype(np.float32)
# Always return relative boxes to avoid label confusions when resizing is performed aferwards
rotated_geoms[..., 0] = rotated_geoms[..., 0] / rotated_img.shape[2]
rotated_geoms[..., 1] = rotated_geoms[..., 1] / rotated_img.shape[1]
return rotated_img, np.clip(rotated_geoms, 0, 1)
def crop_detection(
img: torch.Tensor, boxes: np.ndarray, crop_box: Tuple[float, float, float, float]
) -> Tuple[torch.Tensor, np.ndarray]:
"""Crop and image and associated bboxes
Args:
----
img: image to crop
boxes: array of boxes to clip, absolute (int) or relative (float)
crop_box: box (xmin, ymin, xmax, ymax) to crop the image. Relative coords.
Returns:
-------
A tuple of cropped image, cropped boxes, where the image is not resized.
"""
if any(val < 0 or val > 1 for val in crop_box):
raise AssertionError("coordinates of arg `crop_box` should be relative")
h, w = img.shape[-2:]
xmin, ymin = int(round(crop_box[0] * (w - 1))), int(round(crop_box[1] * (h - 1)))
xmax, ymax = int(round(crop_box[2] * (w - 1))), int(round(crop_box[3] * (h - 1)))
cropped_img = F.crop(img, ymin, xmin, ymax - ymin, xmax - xmin)
# Crop the box
boxes = crop_boxes(boxes, crop_box if boxes.max() <= 1 else (xmin, ymin, xmax, ymax))
return cropped_img, boxes
def random_shadow(img: torch.Tensor, opacity_range: Tuple[float, float], **kwargs) -> torch.Tensor:
"""Crop and image and associated bboxes
Args:
----
img: image to modify
opacity_range: the minimum and maximum desired opacity of the shadow
**kwargs: additional arguments to pass to `create_shadow_mask`
Returns:
-------
shaded image
"""
shadow_mask = create_shadow_mask(img.shape[1:], **kwargs) # type: ignore[arg-type]
opacity = np.random.uniform(*opacity_range)
shadow_tensor = 1 - torch.from_numpy(shadow_mask[None, ...])
# Add some blur to make it believable
k = 7 + 2 * int(4 * np.random.rand(1))
sigma = np.random.uniform(0.5, 5.0)
shadow_tensor = F.gaussian_blur(shadow_tensor, k, sigma=[sigma, sigma])
return opacity * shadow_tensor * img + (1 - opacity) * img
|