File size: 12,260 Bytes
153628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

from copy import deepcopy
from typing import Any, Callable, Dict, List, Optional, Tuple

import torch
from torch import nn
from torch.nn import functional as F
from torchvision.models._utils import IntermediateLayerGetter

from doctr.datasets import VOCABS
from doctr.models.classification import magc_resnet31
from doctr.models.modules.transformer import Decoder, PositionalEncoding

from ...utils.pytorch import _bf16_to_float32, load_pretrained_params
from .base import _MASTER, _MASTERPostProcessor

__all__ = ["MASTER", "master"]


default_cfgs: Dict[str, Dict[str, Any]] = {
    "master": {
        "mean": (0.694, 0.695, 0.693),
        "std": (0.299, 0.296, 0.301),
        "input_shape": (3, 32, 128),
        "vocab": VOCABS["french"],
        "url": "https://doctr-static.mindee.com/models?id=v0.7.0/master-fde31e4a.pt&src=0",
    },
}


class MASTER(_MASTER, nn.Module):
    """Implements MASTER as described in paper: <https://arxiv.org/pdf/1910.02562.pdf>`_.
    Implementation based on the official Pytorch implementation: <https://github.com/wenwenyu/MASTER-pytorch>`_.

    Args:
    ----
        feature_extractor: the backbone serving as feature extractor
        vocab: vocabulary, (without EOS, SOS, PAD)
        d_model: d parameter for the transformer decoder
        dff: depth of the pointwise feed-forward layer
        num_heads: number of heads for the mutli-head attention module
        num_layers: number of decoder layers to stack
        max_length: maximum length of character sequence handled by the model
        dropout: dropout probability of the decoder
        input_shape: size of the image inputs
        exportable: onnx exportable returns only logits
        cfg: dictionary containing information about the model
    """

    def __init__(
        self,
        feature_extractor: nn.Module,
        vocab: str,
        d_model: int = 512,
        dff: int = 2048,
        num_heads: int = 8,  # number of heads in the transformer decoder
        num_layers: int = 3,
        max_length: int = 50,
        dropout: float = 0.2,
        input_shape: Tuple[int, int, int] = (3, 32, 128),  # different from the paper
        exportable: bool = False,
        cfg: Optional[Dict[str, Any]] = None,
    ) -> None:
        super().__init__()

        self.exportable = exportable
        self.max_length = max_length
        self.d_model = d_model
        self.vocab = vocab
        self.cfg = cfg
        self.vocab_size = len(vocab)

        self.feat_extractor = feature_extractor
        self.positional_encoding = PositionalEncoding(self.d_model, dropout, max_len=input_shape[1] * input_shape[2])

        self.decoder = Decoder(
            num_layers=num_layers,
            d_model=self.d_model,
            num_heads=num_heads,
            vocab_size=self.vocab_size + 3,  # EOS, SOS, PAD
            dff=dff,
            dropout=dropout,
            maximum_position_encoding=self.max_length,
        )

        self.linear = nn.Linear(self.d_model, self.vocab_size + 3)
        self.postprocessor = MASTERPostProcessor(vocab=self.vocab)

        for n, m in self.named_modules():
            # Don't override the initialization of the backbone
            if n.startswith("feat_extractor."):
                continue
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def make_source_and_target_mask(
        self, source: torch.Tensor, target: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # borrowed and slightly modified from  https://github.com/wenwenyu/MASTER-pytorch
        # NOTE: nn.TransformerDecoder takes the inverse from this implementation
        # [True, True, True, ..., False, False, False] -> False is masked
        # (N, 1, 1, max_length)
        target_pad_mask = (target != self.vocab_size + 2).unsqueeze(1).unsqueeze(1)
        target_length = target.size(1)
        # sub mask filled diagonal with True = see and False = masked (max_length, max_length)
        # NOTE: onnxruntime tril/triu works only with float currently (onnxruntime 1.11.1 - opset 14)
        target_sub_mask = torch.tril(torch.ones((target_length, target_length), device=source.device), diagonal=0).to(
            dtype=torch.bool
        )
        # source mask filled with ones (max_length, positional_encoded_seq_len)
        source_mask = torch.ones((target_length, source.size(1)), dtype=torch.uint8, device=source.device)
        # combine the two masks into one (N, 1, max_length, max_length)
        target_mask = target_pad_mask & target_sub_mask
        return source_mask, target_mask.int()

    @staticmethod
    def compute_loss(
        model_output: torch.Tensor,
        gt: torch.Tensor,
        seq_len: torch.Tensor,
    ) -> torch.Tensor:
        """Compute categorical cross-entropy loss for the model.
        Sequences are masked after the EOS character.

        Args:
        ----
            gt: the encoded tensor with gt labels
            model_output: predicted logits of the model
            seq_len: lengths of each gt word inside the batch

        Returns:
        -------
            The loss of the model on the batch
        """
        # Input length : number of timesteps
        input_len = model_output.shape[1]
        # Add one for additional <eos> token (sos disappear in shift!)
        seq_len = seq_len + 1
        # Compute loss: don't forget to shift gt! Otherwise the model learns to output the gt[t-1]!
        # The "masked" first gt char is <sos>. Delete last logit of the model output.
        cce = F.cross_entropy(model_output[:, :-1, :].permute(0, 2, 1), gt[:, 1:], reduction="none")
        # Compute mask, remove 1 timestep here as well
        mask_2d = torch.arange(input_len - 1, device=model_output.device)[None, :] >= seq_len[:, None]
        cce[mask_2d] = 0

        ce_loss = cce.sum(1) / seq_len.to(dtype=model_output.dtype)
        return ce_loss.mean()

    def forward(
        self,
        x: torch.Tensor,
        target: Optional[List[str]] = None,
        return_model_output: bool = False,
        return_preds: bool = False,
    ) -> Dict[str, Any]:
        """Call function for training

        Args:
        ----
            x: images
            target: list of str labels
            return_model_output: if True, return logits
            return_preds: if True, decode logits

        Returns:
        -------
            A dictionnary containing eventually loss, logits and predictions.
        """
        # Encode
        features = self.feat_extractor(x)["features"]
        b, c, h, w = features.shape
        # (N, C, H, W) --> (N, H * W, C)
        features = features.view(b, c, h * w).permute((0, 2, 1))
        # add positional encoding to features
        encoded = self.positional_encoding(features)

        out: Dict[str, Any] = {}

        if self.training and target is None:
            raise ValueError("Need to provide labels during training")

        if target is not None:
            # Compute target: tensor of gts and sequence lengths
            _gt, _seq_len = self.build_target(target)
            gt, seq_len = torch.from_numpy(_gt).to(dtype=torch.long), torch.tensor(_seq_len)
            gt, seq_len = gt.to(x.device), seq_len.to(x.device)

            # Compute source mask and target mask
            source_mask, target_mask = self.make_source_and_target_mask(encoded, gt)
            output = self.decoder(gt, encoded, source_mask, target_mask)
            # Compute logits
            logits = self.linear(output)
        else:
            logits = self.decode(encoded)

        logits = _bf16_to_float32(logits)

        if self.exportable:
            out["logits"] = logits
            return out

        if target is not None:
            out["loss"] = self.compute_loss(logits, gt, seq_len)

        if return_model_output:
            out["out_map"] = logits

        if return_preds:
            out["preds"] = self.postprocessor(logits)

        return out

    def decode(self, encoded: torch.Tensor) -> torch.Tensor:
        """Decode function for prediction

        Args:
        ----
            encoded: input tensor

        Returns:
        -------
            A Tuple of torch.Tensor: predictions, logits
        """
        b = encoded.size(0)

        # Padding symbol + SOS at the beginning
        ys = torch.full((b, self.max_length), self.vocab_size + 2, dtype=torch.long, device=encoded.device)  # pad
        ys[:, 0] = self.vocab_size + 1  # sos

        # Final dimension include EOS/SOS/PAD
        for i in range(self.max_length - 1):
            source_mask, target_mask = self.make_source_and_target_mask(encoded, ys)
            output = self.decoder(ys, encoded, source_mask, target_mask)
            logits = self.linear(output)
            prob = torch.softmax(logits, dim=-1)
            next_token = torch.max(prob, dim=-1).indices
            # update ys with the next token and ignore the first token (SOS)
            ys[:, i + 1] = next_token[:, i]

        # Shape (N, max_length, vocab_size + 1)
        return logits


class MASTERPostProcessor(_MASTERPostProcessor):
    """Post processor for MASTER architectures"""

    def __call__(
        self,
        logits: torch.Tensor,
    ) -> List[Tuple[str, float]]:
        # compute pred with argmax for attention models
        out_idxs = logits.argmax(-1)
        # N x L
        probs = torch.gather(torch.softmax(logits, -1), -1, out_idxs.unsqueeze(-1)).squeeze(-1)
        # Take the minimum confidence of the sequence
        probs = probs.min(dim=1).values.detach().cpu()

        # Manual decoding
        word_values = [
            "".join(self._embedding[idx] for idx in encoded_seq).split("<eos>")[0]
            for encoded_seq in out_idxs.cpu().numpy()
        ]

        return list(zip(word_values, probs.numpy().clip(0, 1).tolist()))


def _master(
    arch: str,
    pretrained: bool,
    backbone_fn: Callable[[bool], nn.Module],
    layer: str,
    pretrained_backbone: bool = True,
    ignore_keys: Optional[List[str]] = None,
    **kwargs: Any,
) -> MASTER:
    pretrained_backbone = pretrained_backbone and not pretrained

    # Patch the config
    _cfg = deepcopy(default_cfgs[arch])
    _cfg["input_shape"] = kwargs.get("input_shape", _cfg["input_shape"])
    _cfg["vocab"] = kwargs.get("vocab", _cfg["vocab"])

    kwargs["vocab"] = _cfg["vocab"]
    kwargs["input_shape"] = _cfg["input_shape"]

    # Build the model
    feat_extractor = IntermediateLayerGetter(
        backbone_fn(pretrained_backbone),
        {layer: "features"},
    )
    model = MASTER(feat_extractor, cfg=_cfg, **kwargs)
    # Load pretrained parameters
    if pretrained:
        # The number of classes is not the same as the number of classes in the pretrained model =>
        # remove the last layer weights
        _ignore_keys = ignore_keys if _cfg["vocab"] != default_cfgs[arch]["vocab"] else None
        load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys)

    return model


def master(pretrained: bool = False, **kwargs: Any) -> MASTER:
    """MASTER as described in paper: <https://arxiv.org/pdf/1910.02562.pdf>`_.

    >>> import torch
    >>> from doctr.models import master
    >>> model = master(pretrained=False)
    >>> input_tensor = torch.rand((1, 3, 32, 128))
    >>> out = model(input_tensor)

    Args:
    ----
        pretrained (bool): If True, returns a model pre-trained on our text recognition dataset
        **kwargs: keywoard arguments passed to the MASTER architecture

    Returns:
    -------
        text recognition architecture
    """
    return _master(
        "master",
        pretrained,
        magc_resnet31,
        "10",
        ignore_keys=[
            "decoder.embed.weight",
            "linear.weight",
            "linear.bias",
        ],
        **kwargs,
    )