Spaces:
Runtime error
Runtime error
File size: 4,746 Bytes
153628e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
import json
import os
from pathlib import Path
from typing import Any, Dict, List, Tuple, Union
import numpy as np
from tqdm import tqdm
from .datasets import VisionDataset
from .utils import convert_target_to_relative, crop_bboxes_from_image
__all__ = ["CORD"]
class CORD(VisionDataset):
"""CORD dataset from `"CORD: A Consolidated Receipt Dataset forPost-OCR Parsing"
<https://openreview.net/pdf?id=SJl3z659UH>`_.
.. image:: https://doctr-static.mindee.com/models?id=v0.5.0/cord-grid.png&src=0
:align: center
>>> from doctr.datasets import CORD
>>> train_set = CORD(train=True, download=True)
>>> img, target = train_set[0]
Args:
----
train: whether the subset should be the training one
use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones)
recognition_task: whether the dataset should be used for recognition task
**kwargs: keyword arguments from `VisionDataset`.
"""
TRAIN = (
"https://doctr-static.mindee.com/models?id=v0.1.1/cord_train.zip&src=0",
"45f9dc77f126490f3e52d7cb4f70ef3c57e649ea86d19d862a2757c9c455d7f8",
"cord_train.zip",
)
TEST = (
"https://doctr-static.mindee.com/models?id=v0.1.1/cord_test.zip&src=0",
"8c895e3d6f7e1161c5b7245e3723ce15c04d84be89eaa6093949b75a66fb3c58",
"cord_test.zip",
)
def __init__(
self,
train: bool = True,
use_polygons: bool = False,
recognition_task: bool = False,
**kwargs: Any,
) -> None:
url, sha256, name = self.TRAIN if train else self.TEST
super().__init__(
url,
name,
sha256,
True,
pre_transforms=convert_target_to_relative if not recognition_task else None,
**kwargs,
)
# List images
tmp_root = os.path.join(self.root, "image")
self.data: List[Tuple[Union[str, np.ndarray], Union[str, Dict[str, Any]]]] = []
self.train = train
np_dtype = np.float32
for img_path in tqdm(iterable=os.listdir(tmp_root), desc="Unpacking CORD", total=len(os.listdir(tmp_root))):
# File existence check
if not os.path.exists(os.path.join(tmp_root, img_path)):
raise FileNotFoundError(f"unable to locate {os.path.join(tmp_root, img_path)}")
stem = Path(img_path).stem
_targets = []
with open(os.path.join(self.root, "json", f"{stem}.json"), "rb") as f:
label = json.load(f)
for line in label["valid_line"]:
for word in line["words"]:
if len(word["text"]) > 0:
x = word["quad"]["x1"], word["quad"]["x2"], word["quad"]["x3"], word["quad"]["x4"]
y = word["quad"]["y1"], word["quad"]["y2"], word["quad"]["y3"], word["quad"]["y4"]
box: Union[List[float], np.ndarray]
if use_polygons:
# (x, y) coordinates of top left, top right, bottom right, bottom left corners
box = np.array(
[
[x[0], y[0]],
[x[1], y[1]],
[x[2], y[2]],
[x[3], y[3]],
],
dtype=np_dtype,
)
else:
# Reduce 8 coords to 4 -> xmin, ymin, xmax, ymax
box = [min(x), min(y), max(x), max(y)]
_targets.append((word["text"], box))
text_targets, box_targets = zip(*_targets)
if recognition_task:
crops = crop_bboxes_from_image(
img_path=os.path.join(tmp_root, img_path), geoms=np.asarray(box_targets, dtype=int).clip(min=0)
)
for crop, label in zip(crops, list(text_targets)):
self.data.append((crop, label))
else:
self.data.append((
img_path,
dict(boxes=np.asarray(box_targets, dtype=int).clip(min=0), labels=list(text_targets)),
))
self.root = tmp_root
def extra_repr(self) -> str:
return f"train={self.train}"
|