File size: 5,066 Bytes
153628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

import os
from typing import Any, Dict, List, Tuple, Union

import defusedxml.ElementTree as ET
import numpy as np
from tqdm import tqdm

from .datasets import VisionDataset
from .utils import convert_target_to_relative, crop_bboxes_from_image

__all__ = ["IC03"]


class IC03(VisionDataset):
    """IC03 dataset from `"ICDAR 2003 Robust Reading Competitions: Entries, Results and Future Directions"
    <http://www.iapr-tc11.org/mediawiki/index.php?title=ICDAR_2003_Robust_Reading_Competitions>`_.

    .. image:: https://doctr-static.mindee.com/models?id=v0.5.0/ic03-grid.png&src=0
        :align: center

    >>> from doctr.datasets import IC03
    >>> train_set = IC03(train=True, download=True)
    >>> img, target = train_set[0]

    Args:
    ----
        train: whether the subset should be the training one
        use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones)
        recognition_task: whether the dataset should be used for recognition task
        **kwargs: keyword arguments from `VisionDataset`.
    """

    TRAIN = (
        "http://www.iapr-tc11.org/dataset/ICDAR2003_RobustReading/TrialTrain/scene.zip",
        "9d86df514eb09dd693fb0b8c671ef54a0cfe02e803b1bbef9fc676061502eb94",
        "ic03_train.zip",
    )
    TEST = (
        "http://www.iapr-tc11.org/dataset/ICDAR2003_RobustReading/TrialTest/scene.zip",
        "dbc4b5fd5d04616b8464a1b42ea22db351ee22c2546dd15ac35611857ea111f8",
        "ic03_test.zip",
    )

    def __init__(
        self,
        train: bool = True,
        use_polygons: bool = False,
        recognition_task: bool = False,
        **kwargs: Any,
    ) -> None:
        url, sha256, file_name = self.TRAIN if train else self.TEST
        super().__init__(
            url,
            file_name,
            sha256,
            True,
            pre_transforms=convert_target_to_relative if not recognition_task else None,
            **kwargs,
        )
        self.train = train
        self.data: List[Tuple[Union[str, np.ndarray], Union[str, Dict[str, Any]]]] = []
        np_dtype = np.float32

        # Load xml data
        tmp_root = (
            os.path.join(self.root, "SceneTrialTrain" if self.train else "SceneTrialTest") if sha256 else self.root
        )
        xml_tree = ET.parse(os.path.join(tmp_root, "words.xml"))
        xml_root = xml_tree.getroot()

        for image in tqdm(iterable=xml_root, desc="Unpacking IC03", total=len(xml_root)):
            name, _resolution, rectangles = image

            # File existence check
            if not os.path.exists(os.path.join(tmp_root, name.text)):
                raise FileNotFoundError(f"unable to locate {os.path.join(tmp_root, name.text)}")

            if use_polygons:
                # (x, y) coordinates of top left, top right, bottom right, bottom left corners
                _boxes = [
                    [
                        [float(rect.attrib["x"]), float(rect.attrib["y"])],
                        [float(rect.attrib["x"]) + float(rect.attrib["width"]), float(rect.attrib["y"])],
                        [
                            float(rect.attrib["x"]) + float(rect.attrib["width"]),
                            float(rect.attrib["y"]) + float(rect.attrib["height"]),
                        ],
                        [float(rect.attrib["x"]), float(rect.attrib["y"]) + float(rect.attrib["height"])],
                    ]
                    for rect in rectangles
                ]
            else:
                # x_min, y_min, x_max, y_max
                _boxes = [
                    [
                        float(rect.attrib["x"]),  # type: ignore[list-item]
                        float(rect.attrib["y"]),  # type: ignore[list-item]
                        float(rect.attrib["x"]) + float(rect.attrib["width"]),  # type: ignore[list-item]
                        float(rect.attrib["y"]) + float(rect.attrib["height"]),  # type: ignore[list-item]
                    ]
                    for rect in rectangles
                ]

            # filter images without boxes
            if len(_boxes) > 0:
                boxes: np.ndarray = np.asarray(_boxes, dtype=np_dtype)
                # Get the labels
                labels = [lab.text for rect in rectangles for lab in rect if lab.text]

                if recognition_task:
                    crops = crop_bboxes_from_image(img_path=os.path.join(tmp_root, name.text), geoms=boxes)
                    for crop, label in zip(crops, labels):
                        if crop.shape[0] > 0 and crop.shape[1] > 0 and len(label) > 0:
                            self.data.append((crop, label))
                else:
                    self.data.append((name.text, dict(boxes=boxes, labels=labels)))

        self.root = tmp_root

    def extra_repr(self) -> str:
        return f"train={self.train}"