File size: 6,705 Bytes
153628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

import glob
import json
import os
from pathlib import Path
from typing import Any, Dict, List, Tuple, Union

import cv2
import numpy as np
from PIL import Image
from tqdm import tqdm

from .datasets import AbstractDataset
from .utils import convert_target_to_relative, crop_bboxes_from_image

__all__ = ["IMGUR5K"]


class IMGUR5K(AbstractDataset):
    """IMGUR5K dataset from `"TextStyleBrush: Transfer of Text Aesthetics from a Single Example"
    <https://arxiv.org/abs/2106.08385>`_ |
    `repository <https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset>`_.

    .. image:: https://doctr-static.mindee.com/models?id=v0.5.0/imgur5k-grid.png&src=0
        :align: center
        :width: 630
        :height: 400

    >>> # NOTE: You need to download/generate the dataset from the repository.
    >>> from doctr.datasets import IMGUR5K
    >>> train_set = IMGUR5K(train=True, img_folder="/path/to/IMGUR5K-Handwriting-Dataset/images",
    >>>                     label_path="/path/to/IMGUR5K-Handwriting-Dataset/dataset_info/imgur5k_annotations.json")
    >>> img, target = train_set[0]
    >>> test_set = IMGUR5K(train=False, img_folder="/path/to/IMGUR5K-Handwriting-Dataset/images",
    >>>                    label_path="/path/to/IMGUR5K-Handwriting-Dataset/dataset_info/imgur5k_annotations.json")
    >>> img, target = test_set[0]

    Args:
    ----
        img_folder: folder with all the images of the dataset
        label_path: path to the annotations file of the dataset
        train: whether the subset should be the training one
        use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones)
        recognition_task: whether the dataset should be used for recognition task
        **kwargs: keyword arguments from `AbstractDataset`.
    """

    def __init__(
        self,
        img_folder: str,
        label_path: str,
        train: bool = True,
        use_polygons: bool = False,
        recognition_task: bool = False,
        **kwargs: Any,
    ) -> None:
        super().__init__(
            img_folder, pre_transforms=convert_target_to_relative if not recognition_task else None, **kwargs
        )

        # File existence check
        if not os.path.exists(label_path) or not os.path.exists(img_folder):
            raise FileNotFoundError(f"unable to locate {label_path if not os.path.exists(label_path) else img_folder}")

        self.data: List[Tuple[Union[str, Path, np.ndarray], Union[str, Dict[str, Any]]]] = []
        self.train = train
        np_dtype = np.float32

        img_names = os.listdir(img_folder)
        train_samples = int(len(img_names) * 0.9)
        set_slice = slice(train_samples) if self.train else slice(train_samples, None)

        # define folder to write IMGUR5K recognition dataset
        reco_folder_name = "IMGUR5K_recognition_train" if self.train else "IMGUR5K_recognition_test"
        reco_folder_name = "Poly_" + reco_folder_name if use_polygons else reco_folder_name
        reco_folder_path = os.path.join(os.path.dirname(self.root), reco_folder_name)
        reco_images_counter = 0

        if recognition_task and os.path.isdir(reco_folder_path):
            self._read_from_folder(reco_folder_path)
            return
        elif recognition_task and not os.path.isdir(reco_folder_path):
            os.makedirs(reco_folder_path, exist_ok=False)

        with open(label_path) as f:
            annotation_file = json.load(f)

        for img_name in tqdm(iterable=img_names[set_slice], desc="Unpacking IMGUR5K", total=len(img_names[set_slice])):
            img_path = Path(img_folder, img_name)
            img_id = img_name.split(".")[0]

            # File existence check
            if not os.path.exists(os.path.join(self.root, img_name)):
                raise FileNotFoundError(f"unable to locate {os.path.join(self.root, img_name)}")

            # some files have no annotations which are marked with only a dot in the 'word' key
            # ref: https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset/blob/main/README.md
            if img_id not in annotation_file["index_to_ann_map"].keys():
                continue
            ann_ids = annotation_file["index_to_ann_map"][img_id]
            annotations = [annotation_file["ann_id"][a_id] for a_id in ann_ids]

            labels = [ann["word"] for ann in annotations if ann["word"] != "."]
            # x_center, y_center, width, height, angle
            _boxes = [
                list(map(float, ann["bounding_box"].strip("[ ]").split(", ")))
                for ann in annotations
                if ann["word"] != "."
            ]
            # (x, y) coordinates of top left, top right, bottom right, bottom left corners
            box_targets = [cv2.boxPoints(((box[0], box[1]), (box[2], box[3]), box[4])) for box in _boxes]  # type: ignore[arg-type]

            if not use_polygons:
                # xmin, ymin, xmax, ymax
                box_targets = [np.concatenate((points.min(0), points.max(0)), axis=-1) for points in box_targets]

            # filter images without boxes
            if len(box_targets) > 0:
                if recognition_task:
                    crops = crop_bboxes_from_image(
                        img_path=os.path.join(self.root, img_name), geoms=np.asarray(box_targets, dtype=np_dtype)
                    )
                    for crop, label in zip(crops, labels):
                        if crop.shape[0] > 0 and crop.shape[1] > 0 and len(label) > 0:
                            # write data to disk
                            with open(os.path.join(reco_folder_path, f"{reco_images_counter}.txt"), "w") as f:
                                f.write(label)
                                tmp_img = Image.fromarray(crop)
                                tmp_img.save(os.path.join(reco_folder_path, f"{reco_images_counter}.png"))
                                reco_images_counter += 1
                else:
                    self.data.append((img_path, dict(boxes=np.asarray(box_targets, dtype=np_dtype), labels=labels)))

        if recognition_task:
            self._read_from_folder(reco_folder_path)

    def extra_repr(self) -> str:
        return f"train={self.train}"

    def _read_from_folder(self, path: str) -> None:
        for img_path in glob.glob(os.path.join(path, "*.png")):
            with open(os.path.join(path, f"{os.path.basename(img_path)[:-4]}.txt"), "r") as f:
                self.data.append((img_path, f.read()))