File size: 4,551 Bytes
153628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

import os
from typing import Any, Dict, List, Tuple, Union

import defusedxml.ElementTree as ET
import numpy as np
from tqdm import tqdm

from .datasets import VisionDataset
from .utils import convert_target_to_relative, crop_bboxes_from_image

__all__ = ["SVT"]


class SVT(VisionDataset):
    """SVT dataset from `"The Street View Text Dataset - UCSD Computer Vision"
    <http://vision.ucsd.edu/~kai/svt/>`_.

    .. image:: https://doctr-static.mindee.com/models?id=v0.5.0/svt-grid.png&src=0
        :align: center

    >>> from doctr.datasets import SVT
    >>> train_set = SVT(train=True, download=True)
    >>> img, target = train_set[0]

    Args:
    ----
        train: whether the subset should be the training one
        use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones)
        recognition_task: whether the dataset should be used for recognition task
        **kwargs: keyword arguments from `VisionDataset`.
    """

    URL = "http://vision.ucsd.edu/~kai/svt/svt.zip"
    SHA256 = "63b3d55e6b6d1e036e2a844a20c034fe3af3c32e4d914d6e0c4a3cd43df3bebf"

    def __init__(
        self,
        train: bool = True,
        use_polygons: bool = False,
        recognition_task: bool = False,
        **kwargs: Any,
    ) -> None:
        super().__init__(
            self.URL,
            None,
            self.SHA256,
            True,
            pre_transforms=convert_target_to_relative if not recognition_task else None,
            **kwargs,
        )
        self.train = train
        self.data: List[Tuple[Union[str, np.ndarray], Union[str, Dict[str, Any]]]] = []
        np_dtype = np.float32

        # Load xml data
        tmp_root = os.path.join(self.root, "svt1") if self.SHA256 else self.root
        xml_tree = (
            ET.parse(os.path.join(tmp_root, "train.xml"))
            if self.train
            else ET.parse(os.path.join(tmp_root, "test.xml"))
        )
        xml_root = xml_tree.getroot()

        for image in tqdm(iterable=xml_root, desc="Unpacking SVT", total=len(xml_root)):
            name, _, _, _resolution, rectangles = image

            # File existence check
            if not os.path.exists(os.path.join(tmp_root, name.text)):
                raise FileNotFoundError(f"unable to locate {os.path.join(tmp_root, name.text)}")

            if use_polygons:
                # (x, y) coordinates of top left, top right, bottom right, bottom left corners
                _boxes = [
                    [
                        [float(rect.attrib["x"]), float(rect.attrib["y"])],
                        [float(rect.attrib["x"]) + float(rect.attrib["width"]), float(rect.attrib["y"])],
                        [
                            float(rect.attrib["x"]) + float(rect.attrib["width"]),
                            float(rect.attrib["y"]) + float(rect.attrib["height"]),
                        ],
                        [float(rect.attrib["x"]), float(rect.attrib["y"]) + float(rect.attrib["height"])],
                    ]
                    for rect in rectangles
                ]
            else:
                # x_min, y_min, x_max, y_max
                _boxes = [
                    [
                        float(rect.attrib["x"]),  # type: ignore[list-item]
                        float(rect.attrib["y"]),  # type: ignore[list-item]
                        float(rect.attrib["x"]) + float(rect.attrib["width"]),  # type: ignore[list-item]
                        float(rect.attrib["y"]) + float(rect.attrib["height"]),  # type: ignore[list-item]
                    ]
                    for rect in rectangles
                ]

            boxes: np.ndarray = np.asarray(_boxes, dtype=np_dtype)
            # Get the labels
            labels = [lab.text for rect in rectangles for lab in rect]

            if recognition_task:
                crops = crop_bboxes_from_image(img_path=os.path.join(tmp_root, name.text), geoms=boxes)
                for crop, label in zip(crops, labels):
                    if crop.shape[0] > 0 and crop.shape[1] > 0 and len(label) > 0:
                        self.data.append((crop, label))
            else:
                self.data.append((name.text, dict(boxes=boxes, labels=labels)))

        self.root = tmp_root

    def extra_repr(self) -> str:
        return f"train={self.train}"