File size: 4,566 Bytes
153628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

import json
import os
from pathlib import Path
from typing import Any, Dict, List, Tuple, Union

import numpy as np

from .datasets import AbstractDataset
from .utils import convert_target_to_relative, crop_bboxes_from_image

__all__ = ["WILDRECEIPT"]


class WILDRECEIPT(AbstractDataset):
    """WildReceipt dataset from `"Spatial Dual-Modality Graph Reasoning for Key Information Extraction"
        <https://arxiv.org/abs/2103.14470v1>`_ |
    `repository <https://download.openmmlab.com/mmocr/data/wildreceipt.tar>`_.

    .. image:: https://doctr-static.mindee.com/models?id=v0.7.0/wildreceipt-dataset.jpg&src=0
        :align: center

    >>> # NOTE: You need to download the dataset first.
    >>> from doctr.datasets import WILDRECEIPT
    >>> train_set = WILDRECEIPT(train=True, img_folder="/path/to/wildreceipt/",
    >>>                     label_path="/path/to/wildreceipt/train.txt")
    >>> img, target = train_set[0]
    >>> test_set = WILDRECEIPT(train=False, img_folder="/path/to/wildreceipt/",
    >>>                    label_path="/path/to/wildreceipt/test.txt")
    >>> img, target = test_set[0]

    Args:
    ----
        img_folder: folder with all the images of the dataset
        label_path: path to the annotations file of the dataset
        train: whether the subset should be the training one
        use_polygons: whether polygons should be considered as rotated bounding box (instead of straight ones)
        recognition_task: whether the dataset should be used for recognition task
        **kwargs: keyword arguments from `AbstractDataset`.
    """

    def __init__(
        self,
        img_folder: str,
        label_path: str,
        train: bool = True,
        use_polygons: bool = False,
        recognition_task: bool = False,
        **kwargs: Any,
    ) -> None:
        super().__init__(
            img_folder, pre_transforms=convert_target_to_relative if not recognition_task else None, **kwargs
        )
        # File existence check
        if not os.path.exists(label_path) or not os.path.exists(img_folder):
            raise FileNotFoundError(f"unable to locate {label_path if not os.path.exists(label_path) else img_folder}")

        tmp_root = img_folder
        self.train = train
        np_dtype = np.float32
        self.data: List[Tuple[Union[str, Path, np.ndarray], Union[str, Dict[str, Any]]]] = []

        with open(label_path, "r") as file:
            data = file.read()
        # Split the text file into separate JSON strings
        json_strings = data.strip().split("\n")
        box: Union[List[float], np.ndarray]
        _targets = []
        for json_string in json_strings:
            json_data = json.loads(json_string)
            img_path = json_data["file_name"]
            annotations = json_data["annotations"]
            for annotation in annotations:
                coordinates = annotation["box"]
                if use_polygons:
                    # (x, y) coordinates of top left, top right, bottom right, bottom left corners
                    box = np.array(
                        [
                            [coordinates[0], coordinates[1]],
                            [coordinates[2], coordinates[3]],
                            [coordinates[4], coordinates[5]],
                            [coordinates[6], coordinates[7]],
                        ],
                        dtype=np_dtype,
                    )
                else:
                    x, y = coordinates[::2], coordinates[1::2]
                    box = [min(x), min(y), max(x), max(y)]
                _targets.append((annotation["text"], box))
            text_targets, box_targets = zip(*_targets)

            if recognition_task:
                crops = crop_bboxes_from_image(
                    img_path=os.path.join(tmp_root, img_path), geoms=np.asarray(box_targets, dtype=int).clip(min=0)
                )
                for crop, label in zip(crops, list(text_targets)):
                    if label and " " not in label:
                        self.data.append((crop, label))
            else:
                self.data.append((
                    img_path,
                    dict(boxes=np.asarray(box_targets, dtype=int).clip(min=0), labels=list(text_targets)),
                ))
        self.root = tmp_root

    def extra_repr(self) -> str:
        return f"train={self.train}"