Spaces:
Runtime error
Runtime error
File size: 15,497 Bytes
153628e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
# Greatly inspired by https://github.com/pytorch/vision/blob/master/torchvision/models/mobilenetv3.py
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple, Union
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
from ....datasets import VOCABS
from ...utils import conv_sequence, load_pretrained_params
__all__ = [
"MobileNetV3",
"mobilenet_v3_small",
"mobilenet_v3_small_r",
"mobilenet_v3_large",
"mobilenet_v3_large_r",
"mobilenet_v3_small_crop_orientation",
"mobilenet_v3_small_page_orientation",
]
default_cfgs: Dict[str, Dict[str, Any]] = {
"mobilenet_v3_large": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (32, 32, 3),
"classes": list(VOCABS["french"]),
"url": "https://doctr-static.mindee.com/models?id=v0.4.1/mobilenet_v3_large-47d25d7e.zip&src=0",
},
"mobilenet_v3_large_r": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (32, 32, 3),
"classes": list(VOCABS["french"]),
"url": "https://doctr-static.mindee.com/models?id=v0.4.1/mobilenet_v3_large_r-a108e192.zip&src=0",
},
"mobilenet_v3_small": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (32, 32, 3),
"classes": list(VOCABS["french"]),
"url": "https://doctr-static.mindee.com/models?id=v0.4.1/mobilenet_v3_small-8a32c32c.zip&src=0",
},
"mobilenet_v3_small_r": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (32, 32, 3),
"classes": list(VOCABS["french"]),
"url": "https://doctr-static.mindee.com/models?id=v0.4.1/mobilenet_v3_small_r-3d61452e.zip&src=0",
},
"mobilenet_v3_small_crop_orientation": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (128, 128, 3),
"classes": [0, -90, 180, 90],
"url": "https://doctr-static.mindee.com/models?id=v0.4.1/classif_mobilenet_v3_small-1ea8db03.zip&src=0",
},
"mobilenet_v3_small_page_orientation": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (512, 512, 3),
"classes": [0, -90, 180, 90],
"url": None,
},
}
def hard_swish(x: tf.Tensor) -> tf.Tensor:
return x * tf.nn.relu6(x + 3.0) / 6.0
def _make_divisible(v: float, divisor: int, min_value: Optional[int] = None) -> int:
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class SqueezeExcitation(Sequential):
"""Squeeze and Excitation."""
def __init__(self, chan: int, squeeze_factor: int = 4) -> None:
super().__init__([
layers.GlobalAveragePooling2D(),
layers.Dense(chan // squeeze_factor, activation="relu"),
layers.Dense(chan, activation="hard_sigmoid"),
layers.Reshape((1, 1, chan)),
])
def call(self, inputs: tf.Tensor, **kwargs: Any) -> tf.Tensor:
x = super().call(inputs, **kwargs)
x = tf.math.multiply(inputs, x)
return x
class InvertedResidualConfig:
def __init__(
self,
input_channels: int,
kernel: int,
expanded_channels: int,
out_channels: int,
use_se: bool,
activation: str,
stride: Union[int, Tuple[int, int]],
width_mult: float = 1,
) -> None:
self.input_channels = self.adjust_channels(input_channels, width_mult)
self.kernel = kernel
self.expanded_channels = self.adjust_channels(expanded_channels, width_mult)
self.out_channels = self.adjust_channels(out_channels, width_mult)
self.use_se = use_se
self.use_hs = activation == "HS"
self.stride = stride
@staticmethod
def adjust_channels(channels: int, width_mult: float):
return _make_divisible(channels * width_mult, 8)
class InvertedResidual(layers.Layer):
"""InvertedResidual for mobilenet
Args:
----
conf: configuration object for inverted residual
"""
def __init__(
self,
conf: InvertedResidualConfig,
**kwargs: Any,
) -> None:
_kwargs = {"input_shape": kwargs.pop("input_shape")} if isinstance(kwargs.get("input_shape"), tuple) else {}
super().__init__(**kwargs)
act_fn = hard_swish if conf.use_hs else tf.nn.relu
_is_s1 = (isinstance(conf.stride, tuple) and conf.stride == (1, 1)) or conf.stride == 1
self.use_res_connect = _is_s1 and conf.input_channels == conf.out_channels
_layers = []
# expand
if conf.expanded_channels != conf.input_channels:
_layers.extend(conv_sequence(conf.expanded_channels, act_fn, kernel_size=1, bn=True, **_kwargs))
# depth-wise
_layers.extend(
conv_sequence(
conf.expanded_channels,
act_fn,
kernel_size=conf.kernel,
strides=conf.stride,
bn=True,
groups=conf.expanded_channels,
)
)
if conf.use_se:
_layers.append(SqueezeExcitation(conf.expanded_channels))
# project
_layers.extend(
conv_sequence(
conf.out_channels,
None,
kernel_size=1,
bn=True,
)
)
self.block = Sequential(_layers)
def call(
self,
inputs: tf.Tensor,
**kwargs: Any,
) -> tf.Tensor:
out = self.block(inputs, **kwargs)
if self.use_res_connect:
out = tf.add(out, inputs)
return out
class MobileNetV3(Sequential):
"""Implements MobileNetV3, inspired from both:
<https://github.com/xiaochus/MobileNetV3/tree/master/model>`_.
and <https://pytorch.org/vision/stable/_modules/torchvision/models/mobilenetv3.html>`_.
"""
def __init__(
self,
layout: List[InvertedResidualConfig],
include_top: bool = True,
head_chans: int = 1024,
num_classes: int = 1000,
cfg: Optional[Dict[str, Any]] = None,
input_shape: Optional[Tuple[int, int, int]] = None,
) -> None:
_layers = [
Sequential(
conv_sequence(
layout[0].input_channels, hard_swish, True, kernel_size=3, strides=2, input_shape=input_shape
),
name="stem",
)
]
for idx, conf in enumerate(layout):
_layers.append(
InvertedResidual(conf, name=f"inverted_{idx}"),
)
_layers.append(
Sequential(conv_sequence(6 * layout[-1].out_channels, hard_swish, True, kernel_size=1), name="final_block")
)
if include_top:
_layers.extend([
layers.GlobalAveragePooling2D(),
layers.Dense(head_chans, activation=hard_swish),
layers.Dropout(0.2),
layers.Dense(num_classes),
])
super().__init__(_layers)
self.cfg = cfg
def _mobilenet_v3(arch: str, pretrained: bool, rect_strides: bool = False, **kwargs: Any) -> MobileNetV3:
kwargs["num_classes"] = kwargs.get("num_classes", len(default_cfgs[arch]["classes"]))
kwargs["input_shape"] = kwargs.get("input_shape", default_cfgs[arch]["input_shape"])
kwargs["classes"] = kwargs.get("classes", default_cfgs[arch]["classes"])
_cfg = deepcopy(default_cfgs[arch])
_cfg["num_classes"] = kwargs["num_classes"]
_cfg["classes"] = kwargs["classes"]
_cfg["input_shape"] = kwargs["input_shape"]
kwargs.pop("classes")
# cf. Table 1 & 2 of the paper
if arch.startswith("mobilenet_v3_small"):
inverted_residual_setting = [
InvertedResidualConfig(16, 3, 16, 16, True, "RE", 2), # C1
InvertedResidualConfig(16, 3, 72, 24, False, "RE", (2, 1) if rect_strides else 2), # C2
InvertedResidualConfig(24, 3, 88, 24, False, "RE", 1),
InvertedResidualConfig(24, 5, 96, 40, True, "HS", (2, 1) if rect_strides else 2), # C3
InvertedResidualConfig(40, 5, 240, 40, True, "HS", 1),
InvertedResidualConfig(40, 5, 240, 40, True, "HS", 1),
InvertedResidualConfig(40, 5, 120, 48, True, "HS", 1),
InvertedResidualConfig(48, 5, 144, 48, True, "HS", 1),
InvertedResidualConfig(48, 5, 288, 96, True, "HS", (2, 1) if rect_strides else 2), # C4
InvertedResidualConfig(96, 5, 576, 96, True, "HS", 1),
InvertedResidualConfig(96, 5, 576, 96, True, "HS", 1),
]
head_chans = 1024
else:
inverted_residual_setting = [
InvertedResidualConfig(16, 3, 16, 16, False, "RE", 1),
InvertedResidualConfig(16, 3, 64, 24, False, "RE", 2), # C1
InvertedResidualConfig(24, 3, 72, 24, False, "RE", 1),
InvertedResidualConfig(24, 5, 72, 40, True, "RE", (2, 1) if rect_strides else 2), # C2
InvertedResidualConfig(40, 5, 120, 40, True, "RE", 1),
InvertedResidualConfig(40, 5, 120, 40, True, "RE", 1),
InvertedResidualConfig(40, 3, 240, 80, False, "HS", (2, 1) if rect_strides else 2), # C3
InvertedResidualConfig(80, 3, 200, 80, False, "HS", 1),
InvertedResidualConfig(80, 3, 184, 80, False, "HS", 1),
InvertedResidualConfig(80, 3, 184, 80, False, "HS", 1),
InvertedResidualConfig(80, 3, 480, 112, True, "HS", 1),
InvertedResidualConfig(112, 3, 672, 112, True, "HS", 1),
InvertedResidualConfig(112, 5, 672, 160, True, "HS", (2, 1) if rect_strides else 2), # C4
InvertedResidualConfig(160, 5, 960, 160, True, "HS", 1),
InvertedResidualConfig(160, 5, 960, 160, True, "HS", 1),
]
head_chans = 1280
kwargs["num_classes"] = _cfg["num_classes"]
kwargs["input_shape"] = _cfg["input_shape"]
# Build the model
model = MobileNetV3(
inverted_residual_setting,
head_chans=head_chans,
cfg=_cfg,
**kwargs,
)
# Load pretrained parameters
if pretrained:
load_pretrained_params(model, default_cfgs[arch]["url"])
return model
def mobilenet_v3_small(pretrained: bool = False, **kwargs: Any) -> MobileNetV3:
"""MobileNetV3-Small architecture as described in
`"Searching for MobileNetV3",
<https://arxiv.org/pdf/1905.02244.pdf>`_.
>>> import tensorflow as tf
>>> from doctr.models import mobilenet_v3_small
>>> model = mobilenet_v3_small(pretrained=False)
>>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained: boolean, True if model is pretrained
**kwargs: keyword arguments of the MobileNetV3 architecture
Returns:
-------
a keras.Model
"""
return _mobilenet_v3("mobilenet_v3_small", pretrained, False, **kwargs)
def mobilenet_v3_small_r(pretrained: bool = False, **kwargs: Any) -> MobileNetV3:
"""MobileNetV3-Small architecture as described in
`"Searching for MobileNetV3",
<https://arxiv.org/pdf/1905.02244.pdf>`_, with rectangular pooling.
>>> import tensorflow as tf
>>> from doctr.models import mobilenet_v3_small_r
>>> model = mobilenet_v3_small_r(pretrained=False)
>>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained: boolean, True if model is pretrained
**kwargs: keyword arguments of the MobileNetV3 architecture
Returns:
-------
a keras.Model
"""
return _mobilenet_v3("mobilenet_v3_small_r", pretrained, True, **kwargs)
def mobilenet_v3_large(pretrained: bool = False, **kwargs: Any) -> MobileNetV3:
"""MobileNetV3-Large architecture as described in
`"Searching for MobileNetV3",
<https://arxiv.org/pdf/1905.02244.pdf>`_.
>>> import tensorflow as tf
>>> from doctr.models import mobilenet_v3_large
>>> model = mobilenet_v3_large(pretrained=False)
>>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained: boolean, True if model is pretrained
**kwargs: keyword arguments of the MobileNetV3 architecture
Returns:
-------
a keras.Model
"""
return _mobilenet_v3("mobilenet_v3_large", pretrained, False, **kwargs)
def mobilenet_v3_large_r(pretrained: bool = False, **kwargs: Any) -> MobileNetV3:
"""MobileNetV3-Large architecture as described in
`"Searching for MobileNetV3",
<https://arxiv.org/pdf/1905.02244.pdf>`_.
>>> import tensorflow as tf
>>> from doctr.models import mobilenet_v3_large_r
>>> model = mobilenet_v3_large_r(pretrained=False)
>>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained: boolean, True if model is pretrained
**kwargs: keyword arguments of the MobileNetV3 architecture
Returns:
-------
a keras.Model
"""
return _mobilenet_v3("mobilenet_v3_large_r", pretrained, True, **kwargs)
def mobilenet_v3_small_crop_orientation(pretrained: bool = False, **kwargs: Any) -> MobileNetV3:
"""MobileNetV3-Small architecture as described in
`"Searching for MobileNetV3",
<https://arxiv.org/pdf/1905.02244.pdf>`_.
>>> import tensorflow as tf
>>> from doctr.models import mobilenet_v3_small_crop_orientation
>>> model = mobilenet_v3_small_crop_orientation(pretrained=False)
>>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained: boolean, True if model is pretrained
**kwargs: keyword arguments of the MobileNetV3 architecture
Returns:
-------
a keras.Model
"""
return _mobilenet_v3("mobilenet_v3_small_crop_orientation", pretrained, include_top=True, **kwargs)
def mobilenet_v3_small_page_orientation(pretrained: bool = False, **kwargs: Any) -> MobileNetV3:
"""MobileNetV3-Small architecture as described in
`"Searching for MobileNetV3",
<https://arxiv.org/pdf/1905.02244.pdf>`_.
>>> import tensorflow as tf
>>> from doctr.models import mobilenet_v3_small_page_orientation
>>> model = mobilenet_v3_small_page_orientation(pretrained=False)
>>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained: boolean, True if model is pretrained
**kwargs: keyword arguments of the MobileNetV3 architecture
Returns:
-------
a keras.Model
"""
return _mobilenet_v3("mobilenet_v3_small_page_orientation", pretrained, include_top=True, **kwargs)
|