File size: 15,497 Bytes
153628e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
# Copyright (C) 2021-2024, Mindee.

# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.

# Greatly inspired by https://github.com/pytorch/vision/blob/master/torchvision/models/mobilenetv3.py

from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple, Union

import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential

from ....datasets import VOCABS
from ...utils import conv_sequence, load_pretrained_params

__all__ = [
    "MobileNetV3",
    "mobilenet_v3_small",
    "mobilenet_v3_small_r",
    "mobilenet_v3_large",
    "mobilenet_v3_large_r",
    "mobilenet_v3_small_crop_orientation",
    "mobilenet_v3_small_page_orientation",
]


default_cfgs: Dict[str, Dict[str, Any]] = {
    "mobilenet_v3_large": {
        "mean": (0.694, 0.695, 0.693),
        "std": (0.299, 0.296, 0.301),
        "input_shape": (32, 32, 3),
        "classes": list(VOCABS["french"]),
        "url": "https://doctr-static.mindee.com/models?id=v0.4.1/mobilenet_v3_large-47d25d7e.zip&src=0",
    },
    "mobilenet_v3_large_r": {
        "mean": (0.694, 0.695, 0.693),
        "std": (0.299, 0.296, 0.301),
        "input_shape": (32, 32, 3),
        "classes": list(VOCABS["french"]),
        "url": "https://doctr-static.mindee.com/models?id=v0.4.1/mobilenet_v3_large_r-a108e192.zip&src=0",
    },
    "mobilenet_v3_small": {
        "mean": (0.694, 0.695, 0.693),
        "std": (0.299, 0.296, 0.301),
        "input_shape": (32, 32, 3),
        "classes": list(VOCABS["french"]),
        "url": "https://doctr-static.mindee.com/models?id=v0.4.1/mobilenet_v3_small-8a32c32c.zip&src=0",
    },
    "mobilenet_v3_small_r": {
        "mean": (0.694, 0.695, 0.693),
        "std": (0.299, 0.296, 0.301),
        "input_shape": (32, 32, 3),
        "classes": list(VOCABS["french"]),
        "url": "https://doctr-static.mindee.com/models?id=v0.4.1/mobilenet_v3_small_r-3d61452e.zip&src=0",
    },
    "mobilenet_v3_small_crop_orientation": {
        "mean": (0.694, 0.695, 0.693),
        "std": (0.299, 0.296, 0.301),
        "input_shape": (128, 128, 3),
        "classes": [0, -90, 180, 90],
        "url": "https://doctr-static.mindee.com/models?id=v0.4.1/classif_mobilenet_v3_small-1ea8db03.zip&src=0",
    },
    "mobilenet_v3_small_page_orientation": {
        "mean": (0.694, 0.695, 0.693),
        "std": (0.299, 0.296, 0.301),
        "input_shape": (512, 512, 3),
        "classes": [0, -90, 180, 90],
        "url": None,
    },
}


def hard_swish(x: tf.Tensor) -> tf.Tensor:
    return x * tf.nn.relu6(x + 3.0) / 6.0


def _make_divisible(v: float, divisor: int, min_value: Optional[int] = None) -> int:
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class SqueezeExcitation(Sequential):
    """Squeeze and Excitation."""

    def __init__(self, chan: int, squeeze_factor: int = 4) -> None:
        super().__init__([
            layers.GlobalAveragePooling2D(),
            layers.Dense(chan // squeeze_factor, activation="relu"),
            layers.Dense(chan, activation="hard_sigmoid"),
            layers.Reshape((1, 1, chan)),
        ])

    def call(self, inputs: tf.Tensor, **kwargs: Any) -> tf.Tensor:
        x = super().call(inputs, **kwargs)
        x = tf.math.multiply(inputs, x)
        return x


class InvertedResidualConfig:
    def __init__(
        self,
        input_channels: int,
        kernel: int,
        expanded_channels: int,
        out_channels: int,
        use_se: bool,
        activation: str,
        stride: Union[int, Tuple[int, int]],
        width_mult: float = 1,
    ) -> None:
        self.input_channels = self.adjust_channels(input_channels, width_mult)
        self.kernel = kernel
        self.expanded_channels = self.adjust_channels(expanded_channels, width_mult)
        self.out_channels = self.adjust_channels(out_channels, width_mult)
        self.use_se = use_se
        self.use_hs = activation == "HS"
        self.stride = stride

    @staticmethod
    def adjust_channels(channels: int, width_mult: float):
        return _make_divisible(channels * width_mult, 8)


class InvertedResidual(layers.Layer):
    """InvertedResidual for mobilenet

    Args:
    ----
        conf: configuration object for inverted residual
    """

    def __init__(
        self,
        conf: InvertedResidualConfig,
        **kwargs: Any,
    ) -> None:
        _kwargs = {"input_shape": kwargs.pop("input_shape")} if isinstance(kwargs.get("input_shape"), tuple) else {}
        super().__init__(**kwargs)

        act_fn = hard_swish if conf.use_hs else tf.nn.relu

        _is_s1 = (isinstance(conf.stride, tuple) and conf.stride == (1, 1)) or conf.stride == 1
        self.use_res_connect = _is_s1 and conf.input_channels == conf.out_channels

        _layers = []
        # expand
        if conf.expanded_channels != conf.input_channels:
            _layers.extend(conv_sequence(conf.expanded_channels, act_fn, kernel_size=1, bn=True, **_kwargs))

        # depth-wise
        _layers.extend(
            conv_sequence(
                conf.expanded_channels,
                act_fn,
                kernel_size=conf.kernel,
                strides=conf.stride,
                bn=True,
                groups=conf.expanded_channels,
            )
        )

        if conf.use_se:
            _layers.append(SqueezeExcitation(conf.expanded_channels))

        # project
        _layers.extend(
            conv_sequence(
                conf.out_channels,
                None,
                kernel_size=1,
                bn=True,
            )
        )

        self.block = Sequential(_layers)

    def call(
        self,
        inputs: tf.Tensor,
        **kwargs: Any,
    ) -> tf.Tensor:
        out = self.block(inputs, **kwargs)
        if self.use_res_connect:
            out = tf.add(out, inputs)

        return out


class MobileNetV3(Sequential):
    """Implements MobileNetV3, inspired from both:
    <https://github.com/xiaochus/MobileNetV3/tree/master/model>`_.
    and <https://pytorch.org/vision/stable/_modules/torchvision/models/mobilenetv3.html>`_.
    """

    def __init__(
        self,
        layout: List[InvertedResidualConfig],
        include_top: bool = True,
        head_chans: int = 1024,
        num_classes: int = 1000,
        cfg: Optional[Dict[str, Any]] = None,
        input_shape: Optional[Tuple[int, int, int]] = None,
    ) -> None:
        _layers = [
            Sequential(
                conv_sequence(
                    layout[0].input_channels, hard_swish, True, kernel_size=3, strides=2, input_shape=input_shape
                ),
                name="stem",
            )
        ]

        for idx, conf in enumerate(layout):
            _layers.append(
                InvertedResidual(conf, name=f"inverted_{idx}"),
            )

        _layers.append(
            Sequential(conv_sequence(6 * layout[-1].out_channels, hard_swish, True, kernel_size=1), name="final_block")
        )

        if include_top:
            _layers.extend([
                layers.GlobalAveragePooling2D(),
                layers.Dense(head_chans, activation=hard_swish),
                layers.Dropout(0.2),
                layers.Dense(num_classes),
            ])

        super().__init__(_layers)
        self.cfg = cfg


def _mobilenet_v3(arch: str, pretrained: bool, rect_strides: bool = False, **kwargs: Any) -> MobileNetV3:
    kwargs["num_classes"] = kwargs.get("num_classes", len(default_cfgs[arch]["classes"]))
    kwargs["input_shape"] = kwargs.get("input_shape", default_cfgs[arch]["input_shape"])
    kwargs["classes"] = kwargs.get("classes", default_cfgs[arch]["classes"])

    _cfg = deepcopy(default_cfgs[arch])
    _cfg["num_classes"] = kwargs["num_classes"]
    _cfg["classes"] = kwargs["classes"]
    _cfg["input_shape"] = kwargs["input_shape"]
    kwargs.pop("classes")

    # cf. Table 1 & 2 of the paper
    if arch.startswith("mobilenet_v3_small"):
        inverted_residual_setting = [
            InvertedResidualConfig(16, 3, 16, 16, True, "RE", 2),  # C1
            InvertedResidualConfig(16, 3, 72, 24, False, "RE", (2, 1) if rect_strides else 2),  # C2
            InvertedResidualConfig(24, 3, 88, 24, False, "RE", 1),
            InvertedResidualConfig(24, 5, 96, 40, True, "HS", (2, 1) if rect_strides else 2),  # C3
            InvertedResidualConfig(40, 5, 240, 40, True, "HS", 1),
            InvertedResidualConfig(40, 5, 240, 40, True, "HS", 1),
            InvertedResidualConfig(40, 5, 120, 48, True, "HS", 1),
            InvertedResidualConfig(48, 5, 144, 48, True, "HS", 1),
            InvertedResidualConfig(48, 5, 288, 96, True, "HS", (2, 1) if rect_strides else 2),  # C4
            InvertedResidualConfig(96, 5, 576, 96, True, "HS", 1),
            InvertedResidualConfig(96, 5, 576, 96, True, "HS", 1),
        ]
        head_chans = 1024
    else:
        inverted_residual_setting = [
            InvertedResidualConfig(16, 3, 16, 16, False, "RE", 1),
            InvertedResidualConfig(16, 3, 64, 24, False, "RE", 2),  # C1
            InvertedResidualConfig(24, 3, 72, 24, False, "RE", 1),
            InvertedResidualConfig(24, 5, 72, 40, True, "RE", (2, 1) if rect_strides else 2),  # C2
            InvertedResidualConfig(40, 5, 120, 40, True, "RE", 1),
            InvertedResidualConfig(40, 5, 120, 40, True, "RE", 1),
            InvertedResidualConfig(40, 3, 240, 80, False, "HS", (2, 1) if rect_strides else 2),  # C3
            InvertedResidualConfig(80, 3, 200, 80, False, "HS", 1),
            InvertedResidualConfig(80, 3, 184, 80, False, "HS", 1),
            InvertedResidualConfig(80, 3, 184, 80, False, "HS", 1),
            InvertedResidualConfig(80, 3, 480, 112, True, "HS", 1),
            InvertedResidualConfig(112, 3, 672, 112, True, "HS", 1),
            InvertedResidualConfig(112, 5, 672, 160, True, "HS", (2, 1) if rect_strides else 2),  # C4
            InvertedResidualConfig(160, 5, 960, 160, True, "HS", 1),
            InvertedResidualConfig(160, 5, 960, 160, True, "HS", 1),
        ]
        head_chans = 1280

    kwargs["num_classes"] = _cfg["num_classes"]
    kwargs["input_shape"] = _cfg["input_shape"]

    # Build the model
    model = MobileNetV3(
        inverted_residual_setting,
        head_chans=head_chans,
        cfg=_cfg,
        **kwargs,
    )
    # Load pretrained parameters
    if pretrained:
        load_pretrained_params(model, default_cfgs[arch]["url"])

    return model


def mobilenet_v3_small(pretrained: bool = False, **kwargs: Any) -> MobileNetV3:
    """MobileNetV3-Small architecture as described in
    `"Searching for MobileNetV3",
    <https://arxiv.org/pdf/1905.02244.pdf>`_.

    >>> import tensorflow as tf
    >>> from doctr.models import mobilenet_v3_small
    >>> model = mobilenet_v3_small(pretrained=False)
    >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32)
    >>> out = model(input_tensor)

    Args:
    ----
        pretrained: boolean, True if model is pretrained
        **kwargs: keyword arguments of the MobileNetV3 architecture

    Returns:
    -------
        a keras.Model
    """
    return _mobilenet_v3("mobilenet_v3_small", pretrained, False, **kwargs)


def mobilenet_v3_small_r(pretrained: bool = False, **kwargs: Any) -> MobileNetV3:
    """MobileNetV3-Small architecture as described in
    `"Searching for MobileNetV3",
    <https://arxiv.org/pdf/1905.02244.pdf>`_, with rectangular pooling.

    >>> import tensorflow as tf
    >>> from doctr.models import mobilenet_v3_small_r
    >>> model = mobilenet_v3_small_r(pretrained=False)
    >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32)
    >>> out = model(input_tensor)

    Args:
    ----
        pretrained: boolean, True if model is pretrained
        **kwargs: keyword arguments of the MobileNetV3 architecture

    Returns:
    -------
        a keras.Model
    """
    return _mobilenet_v3("mobilenet_v3_small_r", pretrained, True, **kwargs)


def mobilenet_v3_large(pretrained: bool = False, **kwargs: Any) -> MobileNetV3:
    """MobileNetV3-Large architecture as described in
    `"Searching for MobileNetV3",
    <https://arxiv.org/pdf/1905.02244.pdf>`_.

    >>> import tensorflow as tf
    >>> from doctr.models import mobilenet_v3_large
    >>> model = mobilenet_v3_large(pretrained=False)
    >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32)
    >>> out = model(input_tensor)

    Args:
    ----
        pretrained: boolean, True if model is pretrained
        **kwargs: keyword arguments of the MobileNetV3 architecture

    Returns:
    -------
        a keras.Model
    """
    return _mobilenet_v3("mobilenet_v3_large", pretrained, False, **kwargs)


def mobilenet_v3_large_r(pretrained: bool = False, **kwargs: Any) -> MobileNetV3:
    """MobileNetV3-Large architecture as described in
    `"Searching for MobileNetV3",
    <https://arxiv.org/pdf/1905.02244.pdf>`_.

    >>> import tensorflow as tf
    >>> from doctr.models import mobilenet_v3_large_r
    >>> model = mobilenet_v3_large_r(pretrained=False)
    >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32)
    >>> out = model(input_tensor)

    Args:
    ----
        pretrained: boolean, True if model is pretrained
        **kwargs: keyword arguments of the MobileNetV3 architecture

    Returns:
    -------
        a keras.Model
    """
    return _mobilenet_v3("mobilenet_v3_large_r", pretrained, True, **kwargs)


def mobilenet_v3_small_crop_orientation(pretrained: bool = False, **kwargs: Any) -> MobileNetV3:
    """MobileNetV3-Small architecture as described in
    `"Searching for MobileNetV3",
    <https://arxiv.org/pdf/1905.02244.pdf>`_.

    >>> import tensorflow as tf
    >>> from doctr.models import mobilenet_v3_small_crop_orientation
    >>> model = mobilenet_v3_small_crop_orientation(pretrained=False)
    >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32)
    >>> out = model(input_tensor)

    Args:
    ----
        pretrained: boolean, True if model is pretrained
        **kwargs: keyword arguments of the MobileNetV3 architecture

    Returns:
    -------
        a keras.Model
    """
    return _mobilenet_v3("mobilenet_v3_small_crop_orientation", pretrained, include_top=True, **kwargs)


def mobilenet_v3_small_page_orientation(pretrained: bool = False, **kwargs: Any) -> MobileNetV3:
    """MobileNetV3-Small architecture as described in
    `"Searching for MobileNetV3",
    <https://arxiv.org/pdf/1905.02244.pdf>`_.
    >>> import tensorflow as tf
    >>> from doctr.models import mobilenet_v3_small_page_orientation
    >>> model = mobilenet_v3_small_page_orientation(pretrained=False)
    >>> input_tensor = tf.random.uniform(shape=[1, 512, 512, 3], maxval=1, dtype=tf.float32)
    >>> out = model(input_tensor)
    Args:
    ----
        pretrained: boolean, True if model is pretrained
        **kwargs: keyword arguments of the MobileNetV3 architecture
    Returns:
    -------
        a keras.Model
    """
    return _mobilenet_v3("mobilenet_v3_small_page_orientation", pretrained, include_top=True, **kwargs)