Spaces:
Runtime error
Runtime error
File size: 9,789 Bytes
153628e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple
from tensorflow.keras import Sequential, layers
from doctr.datasets import VOCABS
from ...modules.layers.tensorflow import FASTConvLayer
from ...utils import conv_sequence, load_pretrained_params
__all__ = ["textnet_tiny", "textnet_small", "textnet_base"]
default_cfgs: Dict[str, Dict[str, Any]] = {
"textnet_tiny": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (32, 32, 3),
"classes": list(VOCABS["french"]),
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/textnet_tiny-fe9cc245.zip&src=0",
},
"textnet_small": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (32, 32, 3),
"classes": list(VOCABS["french"]),
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/textnet_small-29c39c82.zip&src=0",
},
"textnet_base": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (32, 32, 3),
"classes": list(VOCABS["french"]),
"url": "https://doctr-static.mindee.com/models?id=v0.8.1/textnet_base-168aa82c.zip&src=0",
},
}
class TextNet(Sequential):
"""Implements TextNet architecture from `"FAST: Faster Arbitrarily-Shaped Text Detector with
Minimalist Kernel Representation" <https://arxiv.org/abs/2111.02394>`_.
Implementation based on the official Pytorch implementation: <https://github.com/czczup/FAST>`_.
Args:
----
stages (List[Dict[str, List[int]]]): List of dictionaries containing the parameters of each stage.
include_top (bool, optional): Whether to include the classifier head. Defaults to True.
num_classes (int, optional): Number of output classes. Defaults to 1000.
cfg (Optional[Dict[str, Any]], optional): Additional configuration. Defaults to None.
"""
def __init__(
self,
stages: List[Dict[str, List[int]]],
input_shape: Tuple[int, int, int] = (32, 32, 3),
num_classes: int = 1000,
include_top: bool = True,
cfg: Optional[Dict[str, Any]] = None,
) -> None:
_layers = [
*conv_sequence(
out_channels=64, activation="relu", bn=True, kernel_size=3, strides=2, input_shape=input_shape
),
*[
Sequential(
[
FASTConvLayer(**params) # type: ignore[arg-type]
for params in [{key: stage[key][i] for key in stage} for i in range(len(stage["in_channels"]))]
],
name=f"stage_{i}",
)
for i, stage in enumerate(stages)
],
]
if include_top:
_layers.append(
Sequential(
[
layers.AveragePooling2D(1),
layers.Flatten(),
layers.Dense(num_classes),
],
name="classifier",
)
)
super().__init__(_layers)
self.cfg = cfg
def _textnet(
arch: str,
pretrained: bool,
**kwargs: Any,
) -> TextNet:
kwargs["num_classes"] = kwargs.get("num_classes", len(default_cfgs[arch]["classes"]))
kwargs["input_shape"] = kwargs.get("input_shape", default_cfgs[arch]["input_shape"])
kwargs["classes"] = kwargs.get("classes", default_cfgs[arch]["classes"])
_cfg = deepcopy(default_cfgs[arch])
_cfg["num_classes"] = kwargs["num_classes"]
_cfg["input_shape"] = kwargs["input_shape"]
_cfg["classes"] = kwargs["classes"]
kwargs.pop("classes")
# Build the model
model = TextNet(cfg=_cfg, **kwargs)
# Load pretrained parameters
if pretrained:
load_pretrained_params(model, default_cfgs[arch]["url"])
return model
def textnet_tiny(pretrained: bool = False, **kwargs: Any) -> TextNet:
"""Implements TextNet architecture from `"FAST: Faster Arbitrarily-Shaped Text Detector with
Minimalist Kernel Representation" <https://arxiv.org/abs/2111.02394>`_.
Implementation based on the official Pytorch implementation: <https://github.com/czczup/FAST>`_.
>>> import tensorflow as tf
>>> from doctr.models import textnet_tiny
>>> model = textnet_tiny(pretrained=False)
>>> input_tensor = tf.random.uniform(shape=[1, 32, 32, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained: boolean, True if model is pretrained
**kwargs: keyword arguments of the TextNet architecture
Returns:
-------
A textnet tiny model
"""
return _textnet(
"textnet_tiny",
pretrained,
stages=[
{"in_channels": [64] * 3, "out_channels": [64] * 3, "kernel_size": [(3, 3)] * 3, "stride": [1, 2, 1]},
{
"in_channels": [64, 128, 128, 128],
"out_channels": [128] * 4,
"kernel_size": [(3, 3), (1, 3), (3, 3), (3, 1)],
"stride": [2, 1, 1, 1],
},
{
"in_channels": [128, 256, 256, 256],
"out_channels": [256] * 4,
"kernel_size": [(3, 3), (3, 3), (3, 1), (1, 3)],
"stride": [2, 1, 1, 1],
},
{
"in_channels": [256, 512, 512, 512],
"out_channels": [512] * 4,
"kernel_size": [(3, 3), (3, 1), (1, 3), (3, 3)],
"stride": [2, 1, 1, 1],
},
],
**kwargs,
)
def textnet_small(pretrained: bool = False, **kwargs: Any) -> TextNet:
"""Implements TextNet architecture from `"FAST: Faster Arbitrarily-Shaped Text Detector with
Minimalist Kernel Representation" <https://arxiv.org/abs/2111.02394>`_.
Implementation based on the official Pytorch implementation: <https://github.com/czczup/FAST>`_.
>>> import tensorflow as tf
>>> from doctr.models import textnet_small
>>> model = textnet_small(pretrained=False)
>>> input_tensor = tf.random.uniform(shape=[1, 32, 32, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained: boolean, True if model is pretrained
**kwargs: keyword arguments of the TextNet architecture
Returns:
-------
A TextNet small model
"""
return _textnet(
"textnet_small",
pretrained,
stages=[
{"in_channels": [64] * 2, "out_channels": [64] * 2, "kernel_size": [(3, 3)] * 2, "stride": [1, 2]},
{
"in_channels": [64, 128, 128, 128, 128, 128, 128, 128],
"out_channels": [128] * 8,
"kernel_size": [(3, 3), (1, 3), (3, 3), (3, 1), (3, 3), (3, 1), (1, 3), (3, 3)],
"stride": [2, 1, 1, 1, 1, 1, 1, 1],
},
{
"in_channels": [128, 256, 256, 256, 256, 256, 256, 256],
"out_channels": [256] * 8,
"kernel_size": [(3, 3), (3, 3), (1, 3), (3, 1), (3, 3), (1, 3), (3, 1), (3, 3)],
"stride": [2, 1, 1, 1, 1, 1, 1, 1],
},
{
"in_channels": [256, 512, 512, 512, 512],
"out_channels": [512] * 5,
"kernel_size": [(3, 3), (3, 1), (1, 3), (1, 3), (3, 1)],
"stride": [2, 1, 1, 1, 1],
},
],
**kwargs,
)
def textnet_base(pretrained: bool = False, **kwargs: Any) -> TextNet:
"""Implements TextNet architecture from `"FAST: Faster Arbitrarily-Shaped Text Detector with
Minimalist Kernel Representation" <https://arxiv.org/abs/2111.02394>`_.
Implementation based on the official Pytorch implementation: <https://github.com/czczup/FAST>`_.
>>> import tensorflow as tf
>>> from doctr.models import textnet_base
>>> model = textnet_base(pretrained=False)
>>> input_tensor = tf.random.uniform(shape=[1, 32, 32, 3], maxval=1, dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained: boolean, True if model is pretrained
**kwargs: keyword arguments of the TextNet architecture
Returns:
-------
A TextNet base model
"""
return _textnet(
"textnet_base",
pretrained,
stages=[
{
"in_channels": [64] * 10,
"out_channels": [64] * 10,
"kernel_size": [(3, 3), (3, 3), (3, 1), (3, 3), (3, 1), (3, 3), (3, 3), (1, 3), (3, 3), (3, 3)],
"stride": [1, 2, 1, 1, 1, 1, 1, 1, 1, 1],
},
{
"in_channels": [64, 128, 128, 128, 128, 128, 128, 128, 128, 128],
"out_channels": [128] * 10,
"kernel_size": [(3, 3), (1, 3), (3, 3), (3, 1), (3, 3), (3, 3), (3, 1), (3, 1), (3, 3), (3, 3)],
"stride": [2, 1, 1, 1, 1, 1, 1, 1, 1, 1],
},
{
"in_channels": [128, 256, 256, 256, 256, 256, 256, 256],
"out_channels": [256] * 8,
"kernel_size": [(3, 3), (3, 3), (3, 3), (1, 3), (3, 3), (3, 1), (3, 3), (3, 1)],
"stride": [2, 1, 1, 1, 1, 1, 1, 1],
},
{
"in_channels": [256, 512, 512, 512, 512],
"out_channels": [512] * 5,
"kernel_size": [(3, 3), (1, 3), (3, 1), (3, 1), (1, 3)],
"stride": [2, 1, 1, 1, 1],
},
],
**kwargs,
)
|