Spaces:
Runtime error
Runtime error
File size: 6,096 Bytes
153628e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
# Copyright (C) 2021-2024, Mindee.
# This program is licensed under the Apache License 2.0.
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch import nn
from doctr.datasets import VOCABS
from doctr.models.modules.transformer import EncoderBlock
from doctr.models.modules.vision_transformer.pytorch import PatchEmbedding
from ...utils.pytorch import load_pretrained_params
__all__ = ["vit_s", "vit_b"]
default_cfgs: Dict[str, Dict[str, Any]] = {
"vit_s": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (3, 32, 32),
"classes": list(VOCABS["french"]),
"url": "https://doctr-static.mindee.com/models?id=v0.6.0/vit_s-5d05442d.pt&src=0",
},
"vit_b": {
"mean": (0.694, 0.695, 0.693),
"std": (0.299, 0.296, 0.301),
"input_shape": (3, 32, 32),
"classes": list(VOCABS["french"]),
"url": "https://doctr-static.mindee.com/models?id=v0.6.0/vit_b-0fbef167.pt&src=0",
},
}
class ClassifierHead(nn.Module):
"""Classifier head for Vision Transformer
Args:
----
in_channels: number of input channels
num_classes: number of output classes
"""
def __init__(
self,
in_channels: int,
num_classes: int,
) -> None:
super().__init__()
self.head = nn.Linear(in_channels, num_classes)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# (batch_size, num_classes) cls token
return self.head(x[:, 0])
class VisionTransformer(nn.Sequential):
"""VisionTransformer architecture as described in
`"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale",
<https://arxiv.org/pdf/2010.11929.pdf>`_.
Args:
----
d_model: dimension of the transformer layers
num_layers: number of transformer layers
num_heads: number of attention heads
ffd_ratio: multiplier for the hidden dimension of the feedforward layer
patch_size: size of the patches
input_shape: size of the input image
dropout: dropout rate
num_classes: number of output classes
include_top: whether the classifier head should be instantiated
"""
def __init__(
self,
d_model: int,
num_layers: int,
num_heads: int,
ffd_ratio: int,
patch_size: Tuple[int, int] = (4, 4),
input_shape: Tuple[int, int, int] = (3, 32, 32),
dropout: float = 0.0,
num_classes: int = 1000,
include_top: bool = True,
cfg: Optional[Dict[str, Any]] = None,
) -> None:
_layers: List[nn.Module] = [
PatchEmbedding(input_shape, d_model, patch_size),
EncoderBlock(num_layers, num_heads, d_model, d_model * ffd_ratio, dropout, nn.GELU()),
]
if include_top:
_layers.append(ClassifierHead(d_model, num_classes))
super().__init__(*_layers)
self.cfg = cfg
def _vit(
arch: str,
pretrained: bool,
ignore_keys: Optional[List[str]] = None,
**kwargs: Any,
) -> VisionTransformer:
kwargs["num_classes"] = kwargs.get("num_classes", len(default_cfgs[arch]["classes"]))
kwargs["input_shape"] = kwargs.get("input_shape", default_cfgs[arch]["input_shape"])
kwargs["classes"] = kwargs.get("classes", default_cfgs[arch]["classes"])
_cfg = deepcopy(default_cfgs[arch])
_cfg["num_classes"] = kwargs["num_classes"]
_cfg["input_shape"] = kwargs["input_shape"]
_cfg["classes"] = kwargs["classes"]
kwargs.pop("classes")
# Build the model
model = VisionTransformer(cfg=_cfg, **kwargs)
# Load pretrained parameters
if pretrained:
# The number of classes is not the same as the number of classes in the pretrained model =>
# remove the last layer weights
_ignore_keys = ignore_keys if kwargs["num_classes"] != len(default_cfgs[arch]["classes"]) else None
load_pretrained_params(model, default_cfgs[arch]["url"], ignore_keys=_ignore_keys)
return model
def vit_s(pretrained: bool = False, **kwargs: Any) -> VisionTransformer:
"""VisionTransformer-S architecture
`"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale",
<https://arxiv.org/pdf/2010.11929.pdf>`_. Patches: (H, W) -> (H/8, W/8)
NOTE: unofficial config used in ViTSTR and ParSeq
>>> import torch
>>> from doctr.models import vit_s
>>> model = vit_s(pretrained=False)
>>> input_tensor = torch.rand((1, 3, 32, 32), dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained: boolean, True if model is pretrained
**kwargs: keyword arguments of the VisionTransformer architecture
Returns:
-------
A feature extractor model
"""
return _vit(
"vit_s",
pretrained,
d_model=384,
num_layers=12,
num_heads=6,
ffd_ratio=4,
ignore_keys=["2.head.weight", "2.head.bias"],
**kwargs,
)
def vit_b(pretrained: bool = False, **kwargs: Any) -> VisionTransformer:
"""VisionTransformer-B architecture as described in
`"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale",
<https://arxiv.org/pdf/2010.11929.pdf>`_. Patches: (H, W) -> (H/8, W/8)
>>> import torch
>>> from doctr.models import vit_b
>>> model = vit_b(pretrained=False)
>>> input_tensor = torch.rand((1, 3, 32, 32), dtype=tf.float32)
>>> out = model(input_tensor)
Args:
----
pretrained: boolean, True if model is pretrained
**kwargs: keyword arguments of the VisionTransformer architecture
Returns:
-------
A feature extractor model
"""
return _vit(
"vit_b",
pretrained,
d_model=768,
num_layers=12,
num_heads=12,
ffd_ratio=4,
ignore_keys=["2.head.weight", "2.head.bias"],
**kwargs,
)
|